
What we have learned so far

• Straight forward statements

• Conditional statements (branching)

• Repeated statements (loops)• Repeated statements (loops)

• Grouping statements in a subprogram (functions)



Adding Comments

• Why is it important to write comments?
 Some programmers are not very smart and write ugly 

codes!!



Two types of Comments

• Single line comment

int a=5; //initialization

• Multi-line comments

/*
Addition Of Two Numbers
By Bill Gates
© Microsoft Corporation

*/

int a=(b*c + b*d)/b; int a = c + d;



However…..



ArraysArrays
One variable many data



Problem: 
Read 10 numbers from the keyboard and store them



// solution #1

int a, b, c, d, e, f, g, h, i, j;

printf(“Enter a number: “);

scanf(“ %d”, &a);

Problem: 
Read 10 numbers from the keyboard and store them

100

printf(“Enter a number: “);

scanf(“ %d”, &b);

//…

printf(“Enter a number: “);

scanf(“ %d”, &j);

Many variables

Many lines of code



Arrays

• An array is an ordered list of values of similar type

0     1     2     3     4     5     6     7     8     9

The entire array
has a single name

Each value has a numeric index

79   87   94   82   67   98   87   81   74   91

An array of size N is indexed from zero to N-1

a

This array holds 10 values that are indexed from 0 to 9



An array with 8 elements of type double



Arrays

• The values held in an array are called array 
elements

• An array stores multiple values of the same type –
the element type

• The element type can be a primitive type • The element type can be a primitive type 

• Therefore, we can create an array of ints, an array 
of floats, an array of doubles , an array of chars.



Declaring Arrays

data_type array_name[size];    

For example:

int a[10];

a is an array of 10 integers.a is an array of 10 integers.

float prices[3];

prices is an array of 3 floats.

char c[6];

c is an array of 6 characters.



How to assign values?

There are 3 ways.



How to assign values?

First way

• It is possible to initialize an array when it is declared:

float prices[3] = {1.0, 2.1, 2.0};

• Elements with missing values will be initialized to 0

float prices[9] = {1.0, 2.1, 2.0,2.3};



How to assign values?

First way (Continue)

• Declaring an array of characters of size 3:

char letters[3] = {‘a’, ‘b’, ‘c’};

• Or we can skip the 3 and leave it to the compiler to 
estimate the size of the array:

char letters[] = {‘a’, ‘b’, ‘c’};



How to assign values?

Second way:

• Use assignment operator

int a[6];

a[0]=3; 

a[1]=6;



How to assign values?

Third way:

• Use scanf to input in the array:

int a[6];

scanf(“%d”, &a[0]); 

scanf(“%d”, &a[1]);

……..

scanf(“%d”, &a[5]);

Array index could be constant, integer 
variable or expressions that generate 
integers



How to assign values?

Third way (continue):

• Use scanf to input in the array:

int a[6];

for(i= 0; i < 6; i++){

scanf(“%d”, &a[i]);

}



• Example 1: Suppose an array has 5 students’ 
marks. Find average mark. 

How to accommodate N students’ 
where N will be input to your program?

• Example 2: Suppose an array has N students’ 

Arrays: Some easy examples

• Example 2: Suppose an array has N students’ 

marks. Find grade of each student.

• Example 3: Take N numbers as input and store 
them in an array. Print all odd numbers in 
the array.



Example 4: 
Find the maximum number in Find the maximum number in 
an array of unsorted integers



4 40 30 70 60 70 88 99 10 87 91 65

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

Large
r?

Finding maximum

Initially assume first element is the maximum

max = a[0]

max < a[1]

Update max
max = a[1]

max  >= a[1]

Do nothing



find_maximum.c
#include <stdio.h>
#include <stdlib.h>

#define N 12
int main()
{

int a[N] = { 14, 21, 36, 14, 12, 9, 8, 22, 7, 81, 77, 10};
int i;

// Find The Maximum Element 

int max=a[0]; // pick the first number as the current maximum
for(i=1; i< N; i++)
{

if(max < a[i])
{

max=a[i];
}

}

printf("The maxiumum value in the array is %d.\n\n", max);
}



Example 5: 
Find the maximum number (and its Find the maximum number (and its 

index) in an array of unsorted integers



find_maximum_and_index.c
#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 14, 21, 36, 14, 12, 9, 8, 22, 7, 81, 77, 10};
int i, max;

// Find The Maximum Element and it index 
max= a[0];  // initial guess: a[0] is the maximum value
int idx=0; // initial guess: the maximum value is at index 0 int idx=0; // initial guess: the maximum value is at index 0 

for(i=0; i< N; i++)
{

if(max  < a[i])
{

max=a[i];
idx=i;

}
}
printf("The maximum value in the array is %d.\n\n", max);
printf("It is located at index: %d \n\n",  idx);

}



Some Harder Examples

• Print largest and second largest element of an array. 
Assume that the array has at least two elements.



Largest and Second largest

4 21 36 14 62 91 8 22 7 81 77 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

secL = 4 largest = 21

Third element Third element 
t = a[2]

t > largest t <= secLsecL < t <= largest 

secL = t ignoresecL = largest
largest = t



if(a[0] > a[1]){
largest = a[0];
secL = a[1];

}
else{

largest = a[1];
secL = a[0];

}

for(i=2; i< N; i++){

Code Snippet

for(i=2; i< N; i++){
t = a[i];
if(t >= largest){

secL = largest;
largest = t;

}
else if (t > secL) secL = t;

}

printf("The largest: %d second largest: %d", largest, secL);
}



Some Harder Examples

• Print the number of distinct elements in an array which 
is already sorted in ascending order



4 4 6 7 7 7 8 9 10 10 10 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

Number of distinct elements in a sorted array

Number of distinct elements = 6

Number of distinct elements = total number of elements 

same?

Initially assume all elements are distinct

Number of distinct elements = total number of elements 
= 12 

t = a[0]

t  == a[1]

Decrement counter

t  != a[1]

Do nothing



#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 4, 4, 6, 6, 7, 7, 7, 8, 9, 10, 10, 10, 10};
int i, counter;

Code snippet

int i, counter;

counter = N;
for(i=0; i< N-1; i++){

if(a[i] == a[i+1])
counter--;

}
printf("The number of distinct elements in the array is 
%d.\n\n", counter);

}



Some Harder Examples

• Print number of distinct elements in an unsorted array



4 6 6 4 7 8 10 7 8 10 4 9

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

Number of distinct elements in an unsorted array

Number of distinct elements = 6any of them same?

Number of distinct elements = total number of elements 

Initially assume all elements are distinct

t = a[0]

t  == a[j] for some j > 0

Decrement counter

t  != a[j] for all j > 0

Do nothing

Number of distinct elements = total number of elements 
= 12 



#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 4, 6, 6, 4, 7, 8, 10, 7, 8, 10, 4, 9};
int i, j, counter;

counter = N;
for(i=0; i< N-1; i++){

Code snippet

for(i=0; i< N-1; i++){
for (j = i+1; j < N; j++){

if(a[i] == a[j]){
counter--;
break;

}
}

}
printf("The number of distinct elements in the array is 
%d.\n\n", counter);

}



Some Harder Examples

• Left rotate all elements of an array



4 6 6 4 7 8 10 7 8 10 4 9

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

Left rotate all the elements  in an array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

Desired output: 

t = a[0]

6 6 4 7 8 10 7 8 10 4 9 4

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]



#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 4, 6, 6, 4, 7, 8, 10, 7, 8, 10, 4, 9};
int i, t;

t = a[0];
for(i=0; i < N-1; i++)

Code snippet

for(i=0; i < N-1; i++)
a[i] = a[i+1];

a[N-1] = t;
printf(" Array elements after left rotation……..\n");

for(i = 0; i < N; i++)
printf("%d\n", a[i]);

}



Searching 



Search



Linear Search

• The most basic

• Very easy to implement

• The array DOESN’T have to be sorted

• All array elements must be visited if the search fails

• Could be very slow



Example:
Successful

Linear 
Search

Example:
Successful
Linear 
Search



Example:
Failed
Linear 
Search



Problem: 
Find the index of a number in an 

unsorted array of integersunsorted array of integers

linear_search.c



Linear_Search.c
#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 4, 21, 36, 14, 62, 91, 8, 22, 7, 81, 77, 10};
int i;

int target = 62;  //int target = 72; // Try this next 
int idx=-1;
for(i=0; i< N; i++)
{{

printf(".\n");
if(a[i] == target)
{

idx=i;
break;

}
}
if(idx == -1)

printf("Target not found.\n\n");
else

printf("Target found at index: %d \n\n", idx);
}



Linear Search in a Sorted Array

Target 19

21 > 19



Problem: 
Find the index of a number in a 

sorted array of integerssorted array of integers

LinearSearch_InSortedArray.c



LinearSearch_InSortedArray.c
#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N]= { 4, 7, 8, 10, 14, 21, 22, 36, 62, 77, 81, 91};

int target = 62; //int target = 72;// Try this target next 
int i, idx=-1;
for(i=0; i< N; i++)
{

if(a[i] == target)if(a[i] == target)
{

idx=i;
break;

}
else if(a[i]>target)

break; // we can stop here
}
if(idx == -1)

printf("Target not found.\n\n");
else

printf("Target found at index: %d. \n\n", idx);
}



Analysis

• If the list is unsorted we have to search all 
numbers before we declare that the target is not 
present in the array.

• Because the list is sorted we can stop as soon as • Because the list is sorted we can stop as soon as 
we reach a number that is greater than our target

• Can we do even better?



Binary Search

• At each step it splits the remaining array elements 
into two groups

• Therefore, it is faster than the linear search

• Works only on an already SORTED array

• Thus, there is a performance penalty for sorting 
the array



Example:
Successful
Binary
Search



Example: BinarySearch.c



Binary_Search.c
#include <stdio.h>
#include <stdlib.h>
#define N 12

int main()
{

int a[N]= { 4, 7, 8, 10, 14, 21, 22, 36, 62, 77, 81, 91}; //sorted in increasing order
int i;
int target = 22; //int target = 72; // Try this target next
int idx=-1;           // if the target is found its index is stored here

int first=0; // initial values for the three search varaibles
int last= N-1; 
int mid= (first + last)/2;

while(last >= first) 
{

if( a[mid] == target)
{

idx=mid;  // Found it!
break;    // exit the while loop break;    // exit the while loop 

} 
else if(a[mid] > target)
{

// don't search in a[mid] ... a[last]
last = mid-1;

}
else
{

// don't search in a[first] ... a[mid]
first = mid +1;

}

// recalculate mid for the next iteration
mid = (first + last)/2; // integer division!

} // end of while loop

if(idx == -1)
printf("Target not found.\n\n");

else
printf("Target found at index: %d \n\n", idx);

}



Problem: 
Find the all occurrences of a number in 
an array and replace it with a new value.

search_and_replace.c



Linear_Search.c
#include <stdio.h>
#include <stdlib.h>
#define N 12
int main()
{

int a[N] = { 4, 21, 36, 14, 62, 91, 8, 22, 7, 81, 62, 10};
int i;
int target = 62;
int newValue = 65;

int count=0;
int idx[5];  // a helper array that keeps the indexes of all entries == target value
int found=0;

for(i=0; i< N; i++)
{

if(a[i] == target)
{

found = 1;found = 1;
idx[count] = i;
count++;

}
}

if(found == 0)
printf("Not found!\n\n");

else 
{

printf("Found it a total of %d times.\n", count);
for(i=0; i< count; i++)

printf("\t Found @ index %d \n", idx[i]);
}
// Now replace all found occurences with a nother number
for(i=0; i< count; i++)

a[ idx[i] ] = newValue;

system("pause");
}



Selection Sort
(Cards Example)



Initial Configuration

(search all cards and find the smallest)



Swap the two cards



As before, the swap is 
performed in three steps.



Sorted Unsorted

Among the remaining cards
the Jack is the smallest.

It will remain in place.

But the algorithm may perform
Some empty operations
(ie., swap it with itself in place)(ie., swap it with itself in place)



Sorted Unsorted

Among the remaining cards
the queen is the smallest.

It will remain in place.

But the algorithm may perform
Some empty operations
(i.e., swap it with itself in place)(i.e., swap it with itself in place)



Sorted Unsorted

Among the remaining cards
the king is the smallest.

It will remain in place.

But the algorithm may perform
Some empty operations
(i.e., swap it with itself in place)(i.e., swap it with itself in place)



As before, the swap is 
performed in three steps.



Sorted Unsorted

We are down to the last card.
Because there is only one and 
Because we know that it is 
Smaller than all the rest
We don’t need to do anything 
Else with it. This is why the 
Algorithm goes up to < N-1



Sorted

All cards are now sorted.



Selection Sort



Example:
Selection
Sort



Example: SelectionSort.c



#include <stdio.h>
#define N 6
int main()
{

int a[N]= { 23, 78, 45, 8, 32, 56};
int i,j,tmp;
// Sort the array using Selection Sort
int idx,min;
for(i=0; i < N-1; i++)
{

min=a[i];
idx = i;
for(j=i+1; j < N; j++)for(j=i+1; j < N; j++)
if(a[j] < min){

idx = j;
min = a[j];

}
tmp = a[i];
a[i] = min;
a[idx] = tmp;

}
for(i = 0; i < N; i++)

printf("%d\n",a[i]);
}



Questions?Questions?


