
BRANCHING
if-else statements

Conditional Statements

• A conditional statement lets us choose which
statement will be executed next

• Therefore they are sometimes called selection
statements

• Conditional statements give us the power to • Conditional statements give us the power to
make basic decisions

• The C conditional statements are the:

 if statement

 if-else statement

 if-else if-else if-else ladder

 switch-case statement

 Conditional operator (?:)

The if Statement

• The if statement has the following syntax:

if is a C

reserved word

The condition must be a

boolean expression. It must
evaluate to either true or false.

if (condition)
statement;

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

• Selection structure:
– Used to choose among alternative courses of action

– Pseudocode: If student’s mark at least 40
Print “Passed”

• Pseudocode statement in C:

The if Statement (Example)

#include <stdio.h>#include <stdio.h>

main(){

int marks;

printf(“Enter your marks: “);

scanf(“%d”, &marks);

if (marks >= 40)
printf("Passed\n");

}

Logic of an if statement

condition
evaluated

true

statement

true
false

Relational Operators

• A condition often uses one of C's equality
operators or relational operators

< less than

> greater than

<= less than or equal to

Higher
Precedence

<= less than or equal to

>= greater than or equal to

== equal to

!= not equal to

• Note the difference between the equality operator
(==) and the assignment operator (=)

Lower
Precedence

The if-else Statement

• An else clause can be added to an if statement to
make an if-else statement

if (condition)
statement1;

else
statement2;statement2;

• If the condition is true, statement1 is executed;
if the condition is false, statement2 is executed

• One or the other will be executed, but not both

if statement analogy (Y-intersection)

• Selection structure:
– Pseudocode: If student’s mark is at least 40

Print “Passed”

Otherwise
Print “Failed”

• Pseudocode statement in C:

#include <stdio.h>

main()

The if-else Statement (Example)

main()

{

int marks;

printf(“Enter your marks: “);

scanf(“%d”, &marks);
if (marks >= 40)

printf("Passed\n");

else

printf(“Failed\n”);

}

Logic of an if-else statement

condition
evaluated

true false

statement1

true false

statement2

Logic of previous example

printf(“Enter your marks: “);

scanf(“%f”, &marks);

marks >= 40

printf (“Passed”);

true false

printf (“Failed”);

Values on condition
• Zero (0) False

• Anything nonzero TRUE

if (40)
printf(" Hi \n");

else

printf(“ Bye \n");printf(“ Bye \n");

Output: Hi

if (-40)
printf(" Hi \n");

else

printf(“ Bye \n");

Output: Hi

Relational Operators
• Zero (0) False

• Anything nonzero TRUE

if (0)
printf(" Hi \n");

else

printf(“ Bye \n");printf(“ Bye \n");

Output: Bye

a = 40;

if (a)
printf(" Hi \n");

else

printf(“ Bye \n");

Output: Hi

Relational Operators
• Zero (0) False

• Anything nonzero TRUE

a = 0;

if (a)
printf(" Hi \n");

else

printf(“ Bye \n");printf(“ Bye \n");

Output: Bye

a = 30;

if (a = 0)
printf(" Hi \n");

else

printf(“ Bye \n");

Output: Bye

Relational Operators
• FALSE Zero (0)

• TRUE One (1)

a = 5;

printf("%d ", a > 5);

Output: 0

a = 5;

printf("%d ", a == 5);

Output: 1

Little quiz for you
• FALSE Zero (0)

• TRUE One (1)

a = 6;

b = 5;

c = 2;

if (a > b > c)
printf(" Hi \n");

else

printf(“ Bye \n");

Output

(a)Compilation Error

(b)Hi

(c)Bye

Examples

• Write down a program that will take two integers
as input and will print the maximum of two.

• Write down a program that will take three integers
as input and will print the maximum of three.

• Write down a program that will take three integers • Write down a program that will take three integers
as input and will print the second largest of the
three.

Logical NOT

• The logical NOT operation is also called logical
negation or logical complement

• If some condition a is true, then !a is false; if a is
false, then !a is true

• Logical expressions can be shown using a truth • Logical expressions can be shown using a truth
table

cond !cond

true false

false true

• Selection structure:
– Used to choose among alternative courses of action

– Pseudocode: If student’s mark is at least 40
Print “Passed”

• Pseudocode statement in C:

#include <stdio.h>

main()

Example

main()

{

int marks;

printf("Enter your marks: ");

scanf("%d", &marks);
if (marks >= 40)

printf("Passed\n");

}

• Selection structure:
– Used to choose among alternative courses of action

– Pseudocode: If student’s mark is at least 40
Print “Passed”

• Pseudocode statement in C:

#include <stdio.h>

main()

Example

main()

{

int marks;

printf("Enter your marks: ");

scanf("%d", &marks);
if (marks < 40)

printf("Passed\n");

}

• Selection structure:
– Used to choose among alternative courses of action

– Pseudocode: If student’s mark at least 40 Print “Passed”

– If student’s mark not smaller than 40 Print “Passed”

• Pseudocode statement in C:

#include <stdio.h>

main()

Example

main()

{

int marks;

printf("Enter your marks: ");

scanf("%d", &marks);
if (!(marks < 40))

printf("Passed\n");

}

Block Statements

• Several statements can be grouped together into a
block statement delimited by braces

• A block statement can be used wherever a
statement is called for in the C syntax rules

if (b == 0)
{

printf ("divide by zero!!\n");
errorCount++;

}

Block Statements

• In an if-else statement, the if portion, or the
else portion, or both, could be block statements

if (b == 0){
printf("divide by zero!!");
errorCount++;errorCount++;

}
else{

result = a/b;
printf ("Result of division: %d", result);

}

Examples

• Write down a program that will take two integers
as input and will print the maximum of two.

• Write down a program that will take three integers
as input and will print the maximum of three.

• Write down a program that will take three integers • Write down a program that will take three integers
as input and will print the second largest of the
three.

Vertical extension

When we have multiple conditions:
if-else extension

Horizontal extension

Vertical extensionVertical extension

The if-else if-else if –else ladder
• If-else if- else if –else can be used to select from

multiple choices:
if (condition1)

statement1;
else if (condition2)

statement2;
…
……
else if (conditionk)

statementk;
else

statement;
• If the condition1 is true, statement1 is

executed; if condition2 is true, statement2 is

executed; and so on

• One or the other will be executed (i.e. those are
mutually exclusive)

Logic of an if-else if-else statement

condition 2
evaluated

false

false

true

condition 1
evaluated

evaluated
false

condition 3
evaluated

statement 2

true
statement 1

statement 3

true false

statement k

The following chart will be used for a quick grade
conversion in C programming language course:

90-100 A
80-89 B
70-79 C

Example 1

70-79 C
60-69 D
0-59 F

Write down a program that will take a student’s mark
as input and will convert it to the corresponding
letter grade.

scanf("%d", &m);
if (m >= 90)

g = ‘A’;
else if (m >= 80)

g = ‘B’;
else if (m >= 70)

g = ‘C’;
else if (m >= 60)else if (m >= 60)

g = ‘D’;
else

g = ‘F’;
printf("Mark = %d Grade= %c", m, g);

scanf("%d", &m);
if (m >= 90)

g = ‘A’;
if (m >= 80)

g = ‘B’;
if (m >= 70)

g = ‘C’;
if (m >= 60)

Wrong!!

if (m >= 60)
g = ‘D’;

else
g = ‘F’;

printf("Mark = %d Grade= %c", m, g);

scanf("%d", &m);
g = ‘F’;
if (m >= 60)

g = ‘D’;
if (m >= 70)

g = ‘C’;
if (m >= 80)

g = ‘B’;

Correct but
inefficient!!

g = ‘B’;
if (m >= 90)

g = ‘A’;

printf("Mark = %d Grade= %c", m, g);

Horizontal extension

Combining multiple conditions:
Logical Operators

• C defines the following logical operators:

! Logical NOT

&& Logical AND

|| Logical OR

• Logical NOT is a unary operator (it operates on
one operand). We have already seen it before.

• Logical AND and logical OR are binary operators
(each operates on two operands)

Logical AND and Logical OR

• The logical AND expression

cond1 && cond2

is true if both a and b are true, and false otherwise

• The logical OR expression• The logical OR expression

cond1 || cond2

is true if a or b or both are true, and false

otherwise

Logical Operators

• A truth table shows all possible true-false
combinations of the terms

• Since && and || each have two operands, there
are four possible combinations of conditions a
and b

cond1 cond2 cond1 && cond2 cond1 || cond2

true true true true

true false false true

false true false true

false false false false

The following chart will be used for a quick grade
conversion in C programming language course:

90-100 A
80-89 B
70-79 C

Example 1

70-79 C
60-69 D
0-59 F

Write down a program that will take a student’s mark
as input and will convert it to the corresponding
letter grade.

scanf("%d", &m);
if (m >= 90 && m <= 100)

g = ‘A’;
else if (m >= 70 && m < 80)

g = ‘C’;
else if (m >= 80 && m < 90)

g = ‘B’;
else if (m >= 60 && m < 70)else if (m >= 60 && m < 70)

g = ‘D’;
else

g = ‘F’;
printf("Mark = %d Grade= %c", m, g);

scanf("%d", &m);
g = ‘F’;
if (m >= 90 && m <= 100)

g = ‘A’;
if (m >= 70 && m < 80)

g = ‘C’;
if (m >= 80 && m < 90)

g = ‘B’;g = ‘B’;
if (m >= 60 && m < 70)

g = ‘D’;

printf("Mark = %d Grade= %c", m, g);

• Write down a program that will determine whether
a year given as input is a leap year or not.

Example 2

Leap year explained

It takes about 365 days to complete one rotationPrecisely it takes 365.2425 days!

Leap year explained

Adjustments are needed!

Leap year explained

• Leap year condition

1, 2, 3, 4, 5, 6, 7, 8, …..,96, 100, 104, ….200, …. ,300, …,400,
…500, …, 600, …, 700, …., 800, …, 900, … ,1000……

• Blue numbers leap year Multiple of 400• Blue numbers leap year Multiple of 400

• Red numbers NOT leap year Multiple of 100 but not of 400

• Green numbers leap year Multiple of 4 but not of 100

• Black numbers NOT leap year Not divisible by 4 at all

if (year % 400 == 0)

printf(“Leap year”);

else if (year % 100 == 0)

printf(“Not Leap year”);

else if (year % 4 == 0)

Solution 1 (using vertical extension)

printf(“Leap year”);

else

printf(“Not a leap year”);

Solution 2: using horizontal extension

• Leap year condition

1, 2, 3, 4, 5, 6, 7, 8, …..,96, 100, 104, ….200, …. ,300, …,400,
…500, …, 600, …, 700, …., 800, …, 900, … ,1000……

if (?)
printf(“Leap year”);

else

printf(“Not a leap year”);

Solution 2: using horizontal extension

• Leap year condition

1, 2, 3, 4, 5, 6, 7, 8, …..,96, 100, 104, ….200, …. ,300, …,400,
…500, …, 600, …, 700, …., 800, …, 900, … ,1000……

if (blue or green)
printf(“Leap year”);

else

printf(“Not a leap year”);

Solution 2: using horizontal extension

• Leap year condition

1, 2, 3, 4, 5, 6, 7, 8, …..,96, 100, 104, ….200, …. ,300, …,400,
…500, …, 600, …, 700, …., 800, …, 900, … ,1000……

if (blue or (green but not red))
printf(“Leap year”);

else

printf(“Not a leap year”);

Solution 2: using horizontal extension

if (blue or (green but not red))
printf(“Leap year”);

else

printf(“Not a leap year”);

if ((y%400 == 0) || ((y%4 == 0) && (y%100 != 0)))
printf(“Leap year”);

else

printf(“Not a leap year”);

Solution 2: using horizontal extension

Short-Circuited Operators

• The processing of logical AND and logical OR is
“short-circuited”

• If the left operand is sufficient to determine the
result, the right operand is not evaluated

• This type of processing must be used carefully

if (count != 0 && total/count > MAX)
printf ("Testing…");

if ((y%400 == 0) || ((y%4 == 0) && (y%100 != 0)))
printf(“Leap year”);

else

printf(“Not a leap year”);

Most efficient solution:

Solution 2: using horizontal extension

Most efficient solution:

if (black or (red but not blue))
printf(“Not Leap year”);

else

printf(“Leap year”);

if ((y%400 == 0) || ((y%4 == 0) && (y%100 != 0)))
printf(“Leap year”);

else

printf(“Not a leap year”);

Most efficient solution:

Solution 2: using horizontal extension

Most efficient solution:

if ((y%4 != 0) || ((y%100 == 0) && (y%400 != 0)))
printf(“Not Leap year”);

else

printf(“Leap year”);

Take a character as input. If it is uppercase letter
convert it to lowercase, if it is lowercase letter
convert it to uppercase. If it is neither lower case nor
uppercase leave it unchanged.

Example 2

Boolean Expressions in C

• C does not have a boolean data type.

• Therefore, C compares the values of variables and
expressions against 0 (zero) to determine if they
are true or false.

• If the value is 0 then the result is implicitly
assumed to be false.

• If the value is different from 0 then the result is
implicitly assumed to be true.

• C++ and Java have boolean data types.

Example:

• Write a C program that calculates weekly wages
for hourly employees.

 Regular hours 0-40 are paid at $10/hours.

 Overtime (> 40 hours per week) is paid at 150% Overtime (> 40 hours per week) is paid at 150%

The Conditional Operator

• C has a conditional operator that uses a boolean
condition to determine which of two expressions
is evaluated

• Its syntax is:

condition ? expression1 : expression2condition ? expression1 : expression2

• If the condition is true, expression1 is
evaluated; if it is false, expression2 is evaluated

• The value of the entire conditional operator is the
value of the selected expression

The Conditional Operator

• The conditional operator is similar to an if-else

statement, except that it is an expression that
returns a value

• For example:

larger = ((num1 > num2) ? num1 : num2);larger = ((num1 > num2) ? num1 : num2);

• If num1 is greater than num2, then num1 is assigned
to larger; otherwise, num2 is assigned to larger

• The conditional operator is ternary because it
requires three operands

Example:

• Write a C program that will find the absolute value
of a number. You can use only the ternary
operator.

• Second largest of three numbers revisited.

The switch Statement

• The switch statement provides another way to
decide which statement to execute next

• The switch statement evaluates an expression,
then attempts to match the result to one of several
possible cases

• Each case contains a value and a list of
statements

• The flow of control transfers to statement
associated with the first case value that matches

The switch Statement

• Often a break statement is used as the last
statement in each case's statement list

• A break statement causes control to transfer to the
end of the switch statement

• If a break statement is not used, the flow of control • If a break statement is not used, the flow of control
will continue into the next case

• Sometimes this may be appropriate, but often we
want to execute only the statements associated
with one case

The switch Statement

• The general syntax of a switch statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :

switch

and
case

are
reserved case value2 :

statement-list2
case value3 :

statement-list3
case ...

}

reserved
words

If expression
matches value2,

control jumps
to here

The switch Statement

• A switch statement can have an optional default

case

• The default case has no associated value and
simply uses the reserved word default

• If the default case is present, control will transfer • If the default case is present, control will transfer
to it if no other case value matches

• If there is no default case, and no other value
matches, control falls through to the statement
after the switch

The switch Statement example

switch (n%2)

• Write down a program using switch-case structure
that will take an integer as input and will determine
whether the number is odd or even.

switch (n%2)
{

case 0:
printf(“It is Even”);
break;

case 1:
printf(“It is ODD”);
break;

}

The switch Statement example

switch (n%3)

• Write down a program using switch structure that
will take an integer as input and will determine
whether the number is multiple of 3 or not.

switch (n%3)
{

case 0:
printf(“It is Multiple of 3”);
break;

default:
printf(“No it’s not”);
break;

}

This is deliberate and beneficial….

Write down a program that will take a
character as input and will determine
whether it is a vowel or consonant.

This is deliberate and beneficial….

scanf(“%c”,&ch);
switch (ch)
{

case ‘a’: printf(“It is Vowel”);
break;

case ‘e’: printf(“It is Vowel”);case ‘e’: printf(“It is Vowel”);
break;

……

case ‘u’: printf(“It is Vowel”);
break;

default: printf(“It is consonant”);
}

This is deliberate….

scanf(“%c”,&ch);
switch (ch)
{

case ‘a’:
case ‘e’:
…………
case ‘u’: printf(“It is Vowel”);

break;
default: printf(“It is consonant”);

}

The switch Statement example

switch (a > b)

• Write down a program using switch-case structure
that will take two integers as input and will
determine the maximum of two.

switch (a > b)
{

case 0:
max = b;
break;

case 1:
max = a;
break;

}

Limitations of the switch Statement

• The expression of a switch statement must result
in an integral type, meaning an integer (byte,
short, int,) or a char

• It cannot be a floating point value (float or
double)

• The implicit test condition in a switch statement

is equality

• You cannot perform relational checks with a
switch statement

The following chart will be used for a quick grade
conversion in C programming language course:

90-100 A
80-89 B
70-79 C

Can we work around with switches
limitations? One example…..

70-79 C
60-69 D
0-59 F

Write down a program that will take a student’s mark
as input and will convert it to the corresponding
letter grade. Assume that marks are integers.

THE ENDTHE END

