
Data types, variables, constants

Outline
2.1 Introduction
2.2 A Simple C Program: Printing a Line of Text
2.3 Memory Concepts
2.4 Naming Convention of Variables2.4 Naming Convention of Variables
2.5 Arithmetic in C
2.6 Type Conversion

Sensory Memory

(<1 sec)

Computer was modelled
after Human

Short Term Memory

(<1 minute)

Long Term Memory

(Life Time)

http://www.human-memory.net/types_sensory.html

Main

Memory

A simple model of the computer

Sensory
Memory

Short term
Memory

Output

DevicesInput

Devices

Permanent

Storage

ProcessorBuffer

Long term
Memory

Definition: Computer Program

A Computer program is a sequence of
instructions written to perform a specified
A Computer program is a sequence of
instructions written to perform a specifiedinstructions written to perform a specified
task with a computer.
instructions written to perform a specified
task with a computer.

Example: Computer Program

Computer tell me what would be my balance
after 1 year if my starting balance is 1,00,000
and interest rate is 10%.

Computer tell me what would be my balance
after 1 year if my starting balance is 1,00,000
and interest rate is 10%.

Balance

Rate

Year

Processing

New Balance

INPUT
OUTPUT

COMPUTATION

Introduction

• C programming language
– Structured and disciplined approach to program design

– Story  Paragraph  Sentence

– Program  Function  Statement

A Simple C Program: Printing a Line of
Text

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("Welcome to CSE 115!\n");

8

9 return 0;

10 }

• Comments

– Text surrounded by /* and */ is ignored by computer

– Used to describe program

• #include <stdio.h>

– Preprocessor directive - tells computer to load contents of a certain file

– <stdio.h> allows standard input/output operations

Welcome to CSE 115!

A Simple C Program: Printing a Line of
Text (II)

• int main()

– C programs contain one or more functions, exactly one of
which must be main

– Parenthesis used to indicate a function

– int means that main "returns" an integer value

– Braces indicate a block– Braces indicate a block

• The bodies of all functions must be contained in braces

A Simple C Program: Printing a Line of
Text (III)

• printf("Welcome to C!\n");
– Instructs computer to perform an action

• Specifically, prints string of characters within quotes

– Entire line called a statement
• All statements must end with a semicolon

– \ - escape character
• Indicates that printf should do something out of the • Indicates that printf should do something out of the

ordinary
• \n is the newline character

A Simple C Program: Printing a Line of
Text (IV)

• return 0;

– A way to exit a function

– return 0, in this case, means that the program terminated

normally

• Right brace }• Right brace }

– Indicates end of main has been reached

Basic Data types

Type Example Size Range Format Code

char A B C..Z

a b c..z

@ $ % *

8 bits,

1 byte

-128 to +127 “%c”

int 32, 3, 4 ,5

-4, -5, -6

32 bits,

4 bytes
-2,14,74,83,648 to

+2,14,74,83,647

“%d”

“%i” -4, -5, -6 4 bytes +2,14,74,83,647 “%i”

float 3.4, 5.25,
-2.3, -6.7

32 bits,

4 bytes

3.4E-38 to 3.4E+38 “%f”

double 3.4, 5.25,
-2.3, -6.7

64 bits,

8 bytes
1.7E-308 to
1.7E+308

“%lf”

Float format

Single precision floating point:

Sign bit: 1

Exponent: 8 bits

Mantissa: 23 bits

Double format

Double precision floating point:

Sign bit: 1

Exponent: 11 bits

Mantissa: 52 bits

ASCII Values

Memory Concepts

• Variables
– Variable names correspond to locations in the

computer's memory.

– Every variable has a name, a type, a size and a value.

– Whenever a new value is placed into a variable
(through scanf, for example), it replaces (and (through scanf, for example), it replaces (and

destroys) previous value

– Reading variables from memory does not change them

• A visual representation

integer1 45

Using Variables: Output

int a, b, c;

a = 3;

b = 8;

Output:

b = 8;

c = a + b;

printf(“%d” , c);

11

Suppose we want……

int a, b, c;

a = 3;

b = 8;

Output:

b = 8;

c = a + b;

printf(“%d” , c);

The value of c: 11

You can do……

int a, b, c;

a = 3;

b = 8;

Output:

b = 8;

c = a + b;

printf(“The value of c:”);

printf(“%d” , c);

The value of c: 11

printf(“The value of c: %d”,c);

Or….

int a, b, c;

a = 3;

b = 8;

Output:

b = 8;

c = a + b;

printf(“The value of c: %d”,c);

The value of c: 11

Using Variables: Output

printf(type, what);

Format specifier Variable

Type Format Code

char "%c"

int "%d"

"%i"

float "%f"

double "%lf"

Using Variables: Output

int a, b, c;

a = 3;

b = 8;

c = a + b;

float a = 8.958;

printf("%f ", a);

double a = -9.8;

printf("%lf ", a);c = a + b;

printf(“%d” , c);

printf("%lf ", a);

char a = ‘Z’;

printf("%c", a);

char a = 90;

printf("%c", a);

char a = ‘Z’;

printf("%d", a);

Data input

int a;

float b;

scanf("%f", &b);

double c;

scanf(what, where);

Format specifier Variable with & sign

int a;

scanf("%i", &a);

or

scanf("%d", &a);

double c;

scanf("%lf", &c);

char d;

scanf("%c", &d);

Little QUIZ (What is the output if user
enters 0)

int a;

scanf("%i", &a);

char a;

scanf("%c", &a);scanf("%i", &a);

printf("%d", a);

scanf("%c", &a);

printf("%d", a);

• Capital letters A-Z, lowercase letters a-z, digits 0-
9, and the underscore character

• First character must be a letter or underscore

• Usually only the first 31 characters are significant

• There can be no embedded blanks

Naming convention of a variable

• There can be no embedded blanks

• Keywords cannot be used as identifiers

• Identifiers are case sensitive

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

Key words in C

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Same valid/invalid variable names

• First_tag

• char

• Price$

• group one

• average_number

• int_

• 8boys

Declaring variables

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 int main()5 int main()

6 {

7 int interestrate;

8 char ch;

9 return 0;

10 }

Assigning values

• Two ways:
– Using scanf

int c;

scanf(“%d”,&c);

– Using assignment operator

int c;int c;

c = 10;

Arithmetic operators on int and char

• Arithmetic operators:
C opera tion Arithmetic

opera tor
Algeb ra ic
exp ression

C exp ression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

• Rules of operator precedence:

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division
Modulus

Evaluated second. If there are several, they are
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

Arithmetic (II)

• Arithmetic calculations are used in most programs
– Use * for multiplication and / for division

– Integer division truncates remainder

7 / 5 evaluates to 1

– Modulus operator returns the remainder

7 % 5 evaluates to 27 % 5 evaluates to 2

• Operator precedence
– Some arithmetic operators act before others (i.e., multiplication

before addition)

• Use parenthesis when needed

– Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

Operator Precedence examples

• Find the values of the followings:

5+6*7-8/7 = 46

5*4/3 = 65*4/3 = 6

5/(6+7) – 8%8 = 0

Working with characters

• Take a character as input and print ASCII value.

• Convert uppercase to lower case and vice versa

• Write down a program that will take a capital • Write down a program that will take a capital
letter as input and will print n-th letter starting
from the letter given as input (wrap around).
Assume that n is a nonnegative integer less than
or equal to 25. Prompt the user to know the value
of n. (You can not perform condition checking to
solve this problem).

main(){

int npos,cpos,n;

char ch,nch;

scanf("%c%d",&ch,&n);

cpos = ch - ‘A';

npos = (cpos +n)%26;

nch = npos + ‘A';

printf("%c",nch);

}

Working with int…examples

• To extract digits of a number:
– Given a 4 digit number, can you reverse it?

– Modulus (%) and division (/) operators are good enough.

• Interchange content of two variables:• Interchange content of two variables:
 Using one additional variable

 Using no additional variable

• Time difference of two cities.
– Dhaka: 11:20

– Mumbai: 10:50

Military time to standard time

Increment and Decrement Operators

• Increment operator (++) can be used instead of c=c+1

• Decrement operator (--) can be used instead of c=c-1.

• Preincrement
– Operator is used before the variable (++c or --c)

– Variable is changed, then the expression it is in is evaluated

• Postincrement• Postincrement
– Operator is used after the variable (c++ or c--)

– Expression executes, then the variable is changed

Increment and Decrement Operators (II)

• When variable not in an expression
– Preincrementing and postincrementing have the same effect.

c = 20;

++c;

printf(“%d”,c);

and

c = 20;

c++;

printf(“%d”,c);

have the same effect.

both will print 21;

Increment and Decrement Operators (III)

• When variable in an expression
– Pre-incrementing and post-incrementing DOES NOT have the same

effect.

– Preincrement updates the variable first then evaluates expression

– Postincrement evaluates the expression first then updates the variable

c = 5;

printf("%d", ++c);

printf("%d", c++);

Prints 6

Prints 5

In either case, c now has the value of 6

Little Quiz for you (what is the output)

int a, b, c;

b = 10;

c = 20;

a = b+++--c;

printf("%d %d %d", a, b, c);

(a) Compilation error

(b) 30 10 20

(c) 30 11 19

(d) 29 11 19

(e) 29 10 20

• Assignment operators abbreviate assignment expressions
c = c + 3;

can be abbreviated as c += 3; using the addition assignment

operator

• Statements of the form
variable = variable operator expression;

can be rewritten as

Assignment Operators
(shorthand notations)

can be rewritten as

variable operator= expression;

• Examples of other assignment operators:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

Arithmetic Operators for float or double

• Arithmetic operators:

C operation Arithmetic
operator

Algebraic
expression

C expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Integer division vs Fractional division

Example: Integer division:
5/3 = 1

Example: Fractional division:
5.0/3.0=1.667

What about: 5.0/3 or 5/3.0?

Fractional division!!

Working with fractions: Example 1

Sonali Bank annually provides interests at a
certain rate to all its clients having a savings
account with the bank. Write down a program that
will take initial balance, and annual interest rates
and will determine and print:

b = 1,00,000

(1) Balance after one year

(2) Balance after two years

(3) Balance after n years where

n will also be input to your

program.

r = 10%
interest1 = 10,000
b1 = 1,00,000 + 10,000

= 1,10,000

b1 = 1,10,000
r = 10%
interest2 = 11,000
b2 = 1,10,000 + 11,000

= 1,21,000

Type conversion

• Lower to higher auto-conversion (called auto-casting)

• Higher to lower still auto-casting but generates warning

int x = 9;

float y = x; //OK no warning no error

float x = 9.5;

• Work out the followings:

float x = 9.5;

int y = x; //OK but generates warning but no error

int y = (int) x // No warning called casting

float x = 5.0/3;

int y = 5.0/3;

float x = 5/3;

int y = 5/3;

x = 1.0 y = 1 x = 1.6667 y = 1

Type conversion (example)

Floor(x) : The largest integer not exceeding x

Ceil(x) : The smallest integer not less than x

Round(x) : The nearest integer (in case of tie take greater one)





x





x





x

According to the above definition when x = 2.3,

Write down a program that will take a positive fractional number as input
and will print its floor, ceil and round.

floor(x) = 2, ceil(x) = 3 and round(x) = 2

Problem Solving Methodology

1. State the problem clearly

2. Describe the input/output information

3. Work the problem by hand, give example

4. Develop a solution (Algorithm Development)

and Convert it to a program (C program)

5. Test the solution with a variety of data

Working with fractions: Example 2

1. Problem statement

Compute the straight line

distance between two points in a plane

(x1,y1)

(x2, y2)

distance between two points in a plane

2. Input/output description

Point 1 (x1, y1)

Point 2 (x2, y2)

Distance between two points (distance)

Example 2 (cont’d)

3. Hand example

22 side2side1distance 

side1 = 4 - 1 = 3

22 23distance 

22 side2side1distance 

61.313distance 

side2 = 7 - 5 = 2

Example 2 (cont’d)

4. Algorithm development and coding

a. Generalize the hand solution and list/outline the necessary
operations step-by-step

1) Give specific values for point1 (x1, y1) and point2 (x2, 1) Give specific values for point1 (x1, y1) and point2 (x2,
y2)

2) Compute side1=x2-x1 and side2=y2-y1

3) Compute

4) Print distance

b. Convert the above outlined solution to a program using any
language you want (see next slide for C imp.)

22 side2side1distance 

Example 2 (cont’d)

Example 2 (cont’d)

5. Testing

• After compiling your program, run it and see if it
gives the correct result.

• Your program should print out• Your program should print out
The distance between two points is 3.61

• If not, what will you do?

Modification to Example 2

How will you find the distance between two other points (2,5) and (10,8)?

x1=2, y1=5, x2=10, y2=8,

