
Loops / Repetition Statements

• Repetition statements allow us to execute a
statement multiple times

• Often they are referred to as loops

• C has three kinds of repetition statements:

 the while loop

 the for loop

 the do loop

• The programmer should choose the right kind of
loop for the situation

Example 1: Fixing Bad Keyboard Input

• Write a program that refuses to accept a negative
number as an input.

• The program must keep asking the user to enter a
value until he/she enters a positive number.

• How can we do this?

Try to solve it using if-else statement

• Example program that continuously asks for
positive number as input:

int n;
printf (“Please enter a positive number:”);
scanf(“%d”,&n);

if (n < 0){
printf (“Enter positive number, BE POSITIVE!\n”);
scanf(“%d”, &n);

}

if (n < 0){
printf (“Enter positive number, BE POSITIVE!\n”);
scanf(“%d”, &n);

}

………
………

Example 2: Grade of several students

• Write a program that continuously calculates the
grade of all students’ marks and stop when the
user wants.

• After calculating one student’s grade (from his
marks) the program must keep asking the user
whether he likes to continue or not.

• How can we do this?

while Loop

if (condition)
statement;

while

যিদযত�ন

if condition is satisfied execute the statement(s)

while condition is satisfied execute the statement(s)

Logic of an if statement

condition
evaluated

statement

true
false

Logic of a while Loop

statement

true false

condition
evaluated

condition
evaluated

statement

true
false

if logic The while Loop

The while Statement formally

• A while statement has the following syntax:

while (condition)
statement;

• If the condition is true, the statement or a
block of statements is executed

• Then the condition is evaluated again, and if it is
still true, the statement/block is executed again

• The statement/block is executed repeatedly until
the condition becomes false

while (condition){
statement1;
statement2;

……
}

The while Statement

• Example program that continuously asks for
positive number as input:

int n;

printf (“Please enter a positive number:”);
scanf(“%d”,&n);
if (n < 0){
printf (“Enter positive number, BE POSITIVE!\n”);
scanf(“%d”, &n);

}

while(n < 0){

Some examples

• Print “The sky is the limit!” 10 times.

main(){
printf (“The sky is the limit”);

}

Some examples

• Print “The sky is the limit!” 10 times.

main(){
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);

}

Some examples

• Print “The sky is the limit!” 100 times.

main(){
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);
printf (“The sky is the limit”);

}

Some examples

• Print “The sky is the limit!” n times. n will be user
input

int count = 0;int count = 0;

printf (“The sky is the limit”);

• If the condition of a while loop is false initially, the

statement is never executed

• Therefore, the body of a while loop will execute

zero or more times

int count = 0;

printf (“The sky is the limit”);
count++;

int count = 0;
while (count < n)
{

printf (“The sky is the limit”);
count++;

}

scanf(“%d”,&n);

Some examples

• Print “The sky is the limit!” n times. n will be user
input

• If the condition of a while loop is false initially, the

statement is never executed

• Therefore, the body of a while loop will execute

zero or more times

int count = 1;
while (count <= n)
{

printf (“The sky is the limit”);
count++;

}

scanf(“%d”,&n);

Some examples

• Print first n natural numbers.
 Upwards

 Downwards

• Print odd numbers up to n.

• Print even numbers up to n.

• Print summation of first n numbers.

• Print summation of all odd numbers up to n.

• Print summation of all even numbers up to n.

• Print second largest of a series of natural numbers
(at least two) given as input. STOP when the user
enters 0. Natural numbers are 1, 2, 3, 4……

4 21 36 14 62 91 8 22 7 81 77 10

secL = 4 largest = 21

Third element
x

x > largest x <= secLsecL < x <= largest

secL = x ignoresecL = largest
largest = x

x y x

secL largest

xxx

Summary of a while statement

• A while loop is functionally equivalent to the

following structure:

initialization;
while (condition)
{

statement;
increment;

}

• A for statement has the following syntax:

for (initialization ; condition ; increment)
statement;

The increment portion is executed at

the end of each iteration

initialization;
while (condition)
{

statement;
increment;

}

The initialization

is executed once
before the loop begins

The statement is

executed until the
condition becomes false

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

for (initialization ; condition ; increment)
statement;

The for Statement

• An example of a for loop:

for (count=1; count <= n; count++)
printf (“%d\n”, count);

• The initialization section can be used to declare a
variable

• Like a while loop, the condition of a for loop is

tested prior to executing the loop body

• Therefore, the body of a for loop will execute zero

or more times

for (count=n; count >= 1; count--)
printf (“%d\n”, count);

ncountcount

ncount





 and 1

1

The for Statement

• The increment section can perform any calculation

• A for loop is well suited for executing statements

a specific number of times that can be calculated
or determined in advance

int num;
for (num=100; num > 0; num -= 5)

printf (“%d\n”, num);

The break and continue Statement

• Sometimes we need:
 to skip some statements inside the loop (continue)

 or terminate the loop immediately without checking the
test condition (break).

• In such cases, break and continue statements are
used.

The break Statement

The break statement terminates the loop immediately when it is
encountered

Example: break Statement

// Program to calculate the sum of maximum of 10 numbers
// If negative number is entered, loop terminates, sum is displayed
main() {

int i;
double number, sum = 0.0;
for(i=1; i <= 10; ++i) {

printf("Enter n%d: ",i);
scanf("%lf", &number);

// If user enters negative number, loop is terminated
if(number < 0.0) {

break;
}
sum += number;

}
printf("Sum = %.2lf",sum);

}

The continue Statement

The continue statement skips statements after it inside the loop.

Example: continue Statement

// Program to calculate the sum of maximum of 10 +ve numbers
// If negative number is entered, it is ignored
main() {

int i;
double number, sum = 0.0;
for(i=1; i <= 10; ++i) {

printf(" Enter n%d: ", i);
scanf("%lf", &number);

// If user enters negative number, skip it
if(number < 0.0) {

continue;
}
sum += number;

}
printf("Sum = %.2lf",sum);

}

Series Summation
• Write down a program to find the summation of the following

series:

tntttt 4321

i =1 i =2 i =n

ti = f(i)

int main(){

int i, n,t,s = 0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

GENERATE THE TERM ti

ADD THE TERM ti TO s

}

printf("%d",s);

}

Some example problems
• Write down a program to find the summation of the following

series:

n toup......4321 

i =1 i =2 i =n

t1 t2 tn

t = i

int main(){

int i, n,t,s = 0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

t = i;

s = s + t;

}

printf("%d",s);

}

Some example problems
• Write down a program to find the summation of the following

series:

i =1 i =2 i =n

t1 t2 tn

t = i2

int main(){

int i, n,t,s = 0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

t = i*i;

s = s + t;

}

printf("%d",s);

}

22222 toup........4321 n

Some example problems
• Write down a program to find the summation of the following

series:

i =1 i =2 i =n

t1 t2 tn

t = i2 when i is odd

int main(){

int i, n,t,s = 0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

if(i%2 == 1)

t = i*i;

else

t = -i*i;

s = s + t;

}

printf("%d",s);

22222 toup......4321 n

t = -i2 when i is even

Some example problems
• Print factorial of n:

n toup......4321! n

i =1 i =2 i =n

t1 t2 tn

t = i

int main(){

int i, n,t,p = 1;

scanf("%d",&n);

for(i = 1; i <= n; i++){

t = i;

p = p * t;

}

printf("%d",p);

}

Some example problems
• Print xn:

n terms l tota..............
nx xxxxx 

i =1 i =2 i =n

t1 t2 tn

t = x

int main(){

int i,x,n,t,p = 1;

scanf("%d%d",&x,&n);

for(i = 1; i <= n; i++){

t = x;

p = p * t;

}

printf("%d",p);

}

Some example problems
• Write down a program to find the summation of the following

series:

i =1 i =2

i =n

t1 t2 tn

�� = (−1)��� ∗ � ����/ 2� − 1 !

int main(){

int i,j, n;

float x,t,r,s = 0;

scanf("%f%d",&x, &n);

x = 22.0*x/(7*180);

for(i = 1; i < n; i++){

r = 1;

for(j=1;j<=2*i-1; j++)

r = r*j;

t = pow(x,2*i-1);

t = pow(-1,i-1)*t/r;

s = s + t;

} printf("%f",s);

…………….. N terms

i =3

t3

Some example problems
• Write down a program to find the summation of the following

series:

i =0 i =1

i =n-1

t0 t1 tn-1

Power of x  2i+1

int main(){

int i, n;

float x,t,r,s = 0;

scanf("%f%d",&x, &n);

x = 22.0*x/(7*180);

s = t = x;

for(i = 1; i < n; i++){

r = -x*x/(2*i*(2*i+1));

t = r*t;

s = s + t;

}

printf("%f",s);

}

r  -x2 / (2i×(2i+1))

…………….. N terms

tnew  r×tprev

i =2

t2

Some example problems

• Show all factors of a number n

• Candidates 1, 2, 3, 4 ………. n

int main(){

int i,n;

scanf("%d",&n);

for(i = 1; i <= n; i++){

if(n%i == 0)

printf("%d ",i);

}

}

Some example problems

• Show smallest factor of a number n (other than 1)

• Candidates 1, 2, 3, 4 ………. n

• Break on first candidate that becomes a factor

int main(){

int i,n;

scanf("%d",&n);

for(i = 2; i <= n; i++){

if(n%i == 0){

printf("%d",i);

break;

}

}

}

Some example problems

• Show largest factor of a number n (other than n)

• Candidates 1, 2, 3, 4 ………. n

• Break on first candidate that becomes a factor

• Number = largest factor * smallest factor

• largest factor = Number/smallest factor

• Example 28  factors 2, 4, 7, 14, smallest 2, largest 14
int main(){

int i,n;

scanf("%d",&n);

for(i = 2; i <= n; i++){

if(n%i == 0){

printf("%d",n/i);

break;

}

}

}

Some example problems

• Show how many factors of a number n has

• Candidates 1, 2, 3, 4 ………. n

• Increment a counter whenever you get a candidate
which is a factor

int main(){

int i,n,c=0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

if(n%i == 0)

c++;

}

printf("Number of factors: %d",c);

}

Some example problems

• Primality testing: determine whether a number n is prime or
not

• Candidates 1, 2, 3, 4 ………. n

• Increment a counter whenever you get a candidate
which is a factor

• Prime numbers always have two factors.

int main(){

int i,n,c=0;

scanf("%d",&n);

for(i = 1; i <= n; i++){

if(n%i == 0)

c++;

}

if(c == 2)

printf("Prime Number");

else printf("Not a Prime Number");

}

Some example problems

• Primality testing: determine whether a number n is prime or
not

• Candidates 1, 2, 3, 4 ………. n

• Increment a counter whenever you get a candidate
which is a factor

• Prime numbers always have two factors.

int main(){

int i,n,c=0;

scanf("%d",&n);

for(i = 1; i*i <= n; i++){

if(n%i == 0)

c++;

}

if(c == 1 && n != 1)

printf("Prime Number");

else printf("Not a Prime Number");

}

Increase
efficiency by
going up to the
square root

Some example problems
• Perfect number testing: determine whether a number n is perfect

or not

• If a number can be made out of its factors

• For example 6  1, 2, 3  1+ 2 +3 = 6

• Another example 28  1,2,4,7,14  1+2+4+7+14

• Candidates 1, 2, 3, 4 ………. n

• Add to sum whenever you get a candidate which is a factor

int main(){

int i,n,s=0;

scanf("%d",&n);

for(i = 1; i < n; i++){

if(n%i == 0)

s = s + i;

}

if(s == n)

printf("Perfect Number");

else printf("Not a Perfect Number");

}

Some example problems
• GCD of two numbers (Normal way)

• GCD(24,54) = 6

• Factors of 24  1, 2, 3, 4, 6, 8, 12, 24

• Factors of 54  1, 2, 3, 6, 9, 18, 27, 54

• Common Factors 1, 2, 3, 6

• Greatest Common Factor 6

int main(){

int i,a,min,b,gcd=1;

scanf("%d%d",&a,&b);

if(a == 0 || b == 0) gcd = a+b;

else{

min = (a < b)? a : b;

for(i = 1; i <= min; i++){

if(a%i == 0 && b%i == 0)

gcd = i;

}

}

printf("GCD: %d",gcd);

}

Some example problems
• GCD of two numbers (Efficient way)

• gcd(a,b) = gcd (b, a%b) for b > 0

• gcd(54,24)  gcd(24,6)  gcd(6,0)  6

int main(){

int i,a,b;

scanf("%d%d",&a,&b);

while(b != 0){

c = a%b;

a = b;

b = c;

}

printf("GCD: %d", a);

}

Fibonacci Series

Fibonacci Series Generation

1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ……….

2 3 4 5 6 7 8 9

Write down a program that will

print n-th Fibonacci number where

n will be input to your program.

n = 4 output  3

n = 7 output 13

Fibonacci Series Generation

p1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 …

p2 next nextnext nextnextnext

int main(){

int p1,p2,next,n;

scanf("%d",&n);

p1 = 1;

p2 = 1;

next = p1 + p2;

nextnext = p2 + next;

nextnextnext = next + nextnext;

…..

….

}

p1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ..

p2 next

int main(){

int p1,p2,next,n;

scanf("%d",&n);

p1 = 1;

p2 = 1;

for(i = ; i <= ; i++){

next = p1 + p2;

p1 = p2;

p2 = next;

}

p1 nextp2

p1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ..

p2 next

int main(){

int p1,p2,next,n;

scanf("%d",&n);

p1 = 1;

p2 = 1;

for(i = 3; i <= n; i++){

next = p1 + p2;

p1 = p2;

p2 = next;

}

if(n <= 2) printf("%d", p1);

else printf("%d", next);

}

p1 nextp2

The for Statement

• Each expression in the header of a for loop is

optional

• If the initialization is left out, no initialization is
performed

• If the condition is left out, it is always considered
to be true, and therefore creates an infinite loop

• If the increment is left out, no increment operation
is performed

Infinite Loops

• The body of a while loop eventually must make

the condition false

• If not, it is called an infinite loop, which will
execute until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a
program to ensure that your loops will terminate
normally

Infinite Loops

• An example of an infinite loop:

int count = 1;
while (1 == 1){

printf (“%d\n”, count);
count = count - 1;

}

• This loop will continue executing until interrupted
(Control-C) or until an underflow error occurs

int count = 1;
for(; ;){

printf (“%d\n”, count);
count = count - 1;

}

The do Statement

• A do statement has the following syntax:

do{
statement;

}
while (condition);

• The statement is executed once initially, and then
the condition is evaluated

• The statement is executed repeatedly until the
condition becomes false

Logic of a do-while Loop

true

condition
evaluated

statement

false

The do Statement

• An example of a do loop:

• The body of a do loop is executed at least once

int count = 1;
do{

printf(“%d\n”, count);
count++;

} while (count <= 5);

The do Statement

• An example of a do loop:

• The body of a do loop is executed at least once

int n;
do{

printf(“Enter a positive number: ”);
scanf(“%d”,&n);

} while (n < 0);

Comparing while and do

statement

true false

condition
evaluated

The while Loop

true

condition
evaluated

statement

false

The do Loop

Example: Printing reverse of a number

• Write down a program that prints the digits of a
number in reverse.

• For example:

• input: 6457

• output: 7546

scanf(“%d”,&n);
do{

a = n%10;
printf(“%d”,a);
n = n/10;

} while (n != 0);

Relevant Problem: counting number of
digits of a number

• Write down a program that prints number of digits
of a number n.

• For example:

• input: 6457

• output: 4

scanf(“%d”,&n);
c = 0;
do{

n = n/10;
c++;

} while (n != 0);
printf(“%d”,c);

Nested Loops

Nested Loops

• Similar to nested if statements, loops can be

nested as well

• That is, the body of a loop can contain another
loop

• For each iteration of the outer loop, the inner loop
iterates completely

Nested Loops

• What will be the output?

for(i=1; i <= 3; i++){
for(j=1; j <= 2; j++){

printf(“Sky is the limit\n”);
}
printf(“The world is becoming smaller\n”);

}

Outer loop

Inner loop

Output

Sky is the limit
Sky is the limit
The world is becoming smaller

for(i=1; i <= 3; i++){
for(j=1; j <= 2; j++){

printf(“Sky is the limit\n”);
}
printf(“The world is becoming smaller\n”);

}

Output

Sky is the limit
Sky is the limit
The world is becoming smaller
Sky is the limit
Sky is the limit
The world is becoming smaller

for(i=1; i <= 3; i++){
for(j=1; j <= 2; j++){

printf(“Sky is the limit\n”);
}
printf(“The world is becoming smaller\n”);

}

Output

Sky is the limit
Sky is the limit
The world is becoming smaller
Sky is the limit
Sky is the limit
The world is becoming smaller
Sky is the limit
Sky is the limit
The world is becoming smaller

for(i=1; i <= 3; i++){
for(j=1; j <= 2; j++){

printf(“Sky is the limit\n”);
}
printf(“The world is becoming smaller\n”);

}

Output

1 1
1 2
2 1
2 2
3 1
3 2

for(i=1; i <= 3; i++){
for(j=1; j <= 2; j++){

printf(“%d %d\n”,i,j);
}

}

Nested Loops

• How many times will the string "Here" be printed?

count1 = 1;
while (count1 <= 10)
{

count2 = 1;
while (count2 <= 20)
{

printf ("Here \n");
count2++;

}
count1++;

} 10 * 20 = 200

Analogy for Nested Loops

Inner Loop

Outer Loop

Some more Examples

• Write a program that prints all prime numbers up to
x. The integer x will be input to your program.

• Write down a program that will take an integer x as
input and will count and print the number of prime
numbers up to x.

• Write a program that prints all perfect numbers up to
x. The integer x will be input to your program.

• Write down a program that will take an integer x as
input and will count and print the number of perfect
numbers up to x.

Some more Examples

• Write a program that prints all prime numbers up to
x. The integer x will be input to your program.

• Write down a program that will take an integer x as
input and will count and print the number of prime
numbers up to x.

• Write a program that prints all perfect numbers up to
x. The integer x will be input to your program.

• Write a program that prints all prime factors of a
number x given as input.

• Write down a program that will take an integer x as
input and will count and print the number of fibonacci
numbers up to x.

Example: Stars

• Write a program that prints the following. The total
number of lines will be input to your program.

*

**

Example: Stars

• Write a program that prints the following. The total
number of lines will be input to your program.

*

**

Some example problems
• Write down a program to find the summation of the following

series. Please also show the series first in its exact form:

)....21(......)4321()321()21()1(n

i =1 i =2 i =n

t1 t2 tn

ti = (1+2+3 + …. + i)

Some example problems
• Write down a program to find the summation of the following

series. Please also show the series first in its exact form:

)2....21(.....)654321()21()1(n

i =1 i =2 i =n

t1 t2 tn

ti = (1+2+3 + …. + 2i)

Some example problems
• Write down a program to find the summation of the following

series. Please also show the series first in its exact form:

2....21(.....)654321()4321()21(n

i =1 i =2
i =n

t1 t2 tn

ti = (1+2+3 + …. + 2i)

Some example problems
• Write down a program to find the summation of the following

series. Please also show the series first in its exact form:

.....)642(*)531()42(*)31()2(*)1(

i =1 i =2
i =n

t1 t2
tn

ti = (1+3 + …. + 2i-1)*(2+4+6+….+2i)

