
Pointers

What is a pointer?

A pointer is a variable that holds address of
another object (i.e., variable)another object (i.e., variable)

Basic pointer operations

int i = 5;
int *ip = &i;

printf("%d\n", *ip); Prints 5

Basic pointer operations

*ip = 7;

Basic pointer operations

int j = 3;
ip = &j;

Basic pointer operations

int *ip2;
ip2 = ip;

Basic pointer operations

ip = &i;

Pointers and arrays

• Is there a difference?

Pointers and arrays

• Array indexing: a[0], a[1], a[2], …

• int *ip = &a[0];

• Pointer indexing: *ip, *(ip+1), *(ip+2), …

• In general a[i] is “equivalent” to *(ip+i)

Pointer Arithmetic

• ip2 = ip1 + 3;

• ip2 - ip1 == 3 (true or false?)

int *ip;

int a[10];

ip = &a[3];

ip2 = ip + 1;

Autoincrement operator ++
(and its companion, --)

• Both of these are defined for pointers

• Array version: a[i++]

• Pointer version: *ip++

Prefix form is defined too

• Array version: a[++i]

• preincrement form: *++ip

• *ip-- and *--ip.

Copying an array using pointers

int array1[10], array2[10];

int *ip1, *ip2 = &array2[0];

int *ep = &array1[9];

for(ip1 = &array1[0]; ip1 <= ep; ip1++)

*ip2++ = *ip1;

[http://www.eskimo.com/~scs/cclass/notes/sx10a.html]

Comparing strings using pointers

char *p1 = &str1[0], *p2 = &str2[0];

while(1)

{

if(*p1 != *p2)

return *p1 - *p2;

if(*p1 == '\0' || *p2 == '\0')

return 0;

p1++;

p2++;

}

String copy using pointers

char *dp = &dest[0], *sp = &src[0];

while(*sp != '\0')

*dp++ = *sp++;
while(*sp)

*dp++ = *sp++;

*dp = '\0';

*dp++ = *sp++;

Arrays of pointers

#include <stdio.h>
#include <stdlib.h>

int main()
{

int* pArray[10];

int a;int a;
int b;

pArray[0] = &a;
pArray[1] = &b;

system("pause");
}

Pointers to functions

// function returning an int
// and having two arguments (an int and a char)
int fun1(int a, char c);

// function returning pointer to an int
// and having one int argument
int *fun2(int a);

// pointer to function returning int
// and having two arguments (an int and a char)
int (*funp)(int a, char c);

// two ways to call the function
(*funp)(1,’b’);
funp(1,’c’);

Example
#include <stdio.h>
#include <stdlib.h>

int fun1(int a, int b)
{

printf("fun1\n");
return a+b;

}

int fun2(int a, int b)
{

printf("fun2\n");
return a-b;return a-b;

}

int main()
{

// pointer to function returning int and having two arguments: an int and a float
int (*funp)(int a, int b);

funp = fun1; // take the address of the function and assign it to the function pointer
(*funp)(1,2); // call the function using the pointer

funp = fun2; // reassign the pointer to point to fun2
funp(1,2); // an alternative way of calling a function using a pointer

system("pause");
}

Pointers to Structures

#include <stdio.h>
#include <stdlib.h>

typedef struct node
{

int value;
} node_t;

int main()
{{

node_t Node;
Node.value = 5; // initialize it to 5
printf("value = %d\n", Node.value);

// pointer to the statically allocated struct Node
node_t *p = &Node;
p->value = 6; // change it to 6
printf("value = %d\n", p->value);

}

Dilemma

• Question:–
 If strings are arrays of characters, …

 and if arrays cannot be returned from functions, …

 how can we manipulate variable length strings and pass
them around our programs?

• Answer:–
 Use storage allocated in The Heap! (i.e., dynamic memory

allocation)

Definition — The Heap

• A region of memory provided by most operating
systems for allocating storage not in Last in, First
out discipline

• I.e., not a stack

• Must be explicitly allocated and released

• May be accessed only with pointers• May be accessed only with pointers
• Remember, an array is equivalent to a pointer

• Many hazards to the C programmer

Static Data Allocation

0xFFFFFFFF

address
heap

stack

(dynamically allocated)
SP

0x00000000

address
space

program code

(text)

static data

(dynamically allocated)

PC

Allocating Memory in The Heap

• See <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

• malloc() — allocates size bytes of memory
from the heap and returns a pointer to it.

• NULL pointer if allocation fails for any reason

• free() — returns the chunk of memory
pointed to by ptr

• Must have been allocated by malloc or calloc

Allocating Memory in The Heap

• See <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

• malloc() — allocates size bytes of memory
from the heap and returns a pointer to it.

• NULL pointer if allocation fails for any reason

• free() — returns the chunk of memory
pointed to by ptr

• Must have been allocated by malloc or calloc

Notes

• calloc() is just a variant of malloc()

• malloc() is analogous to new in C++ and Java

• new in C++ actually calls malloc()

• free() is analogous to delete in C++

• delete in C++ actually calls free()• delete in C++ actually calls free()

• Java does not have delete — uses garbage collection to

recover memory no longer in use

Typical usage of malloc() and free()

char *getTextFromSomewhere(…);

int main(){

char * txt;

…;…;

txt = getTextFromSomewhere(…);

…;

printf("The text returned is %s.", txt);

free(txt);

}

Typical usage of malloc() and free()

char * getTextFromSomewhere(…){
char *t;
...
t = malloc(stringLength);
...
return t;

}

int main(){
char * txt;
…;
txt = getTextFromSomewhere(…);
…;
printf("The text returned is %s.", txt);
free(txt);

}

Typical usage of malloc() and free()

char * getTextFromSomewhere(…){
char *t;
...
t = malloc(stringLength);
...
return t;

}

int main(){
char * txt;
…;
txt = getTextFromSomewhere(…);
…;
printf("The text returned is %s.", txt);
free(txt);

}

Usage of malloc() and free()

char *getText(…){
char *t;
...
t = malloc(stringLength);
...
return t;

}

int main(){
char * txt;
…;
txt = getText(…);
…;
printf("The text returned is %s.", txt);
free(txt);

}

Definition – Memory Leak

• The steady loss of available memory due to

forgetting to free() everything that was

malloc’ed.

• Bug-a-boo of most large C and C++ programs

• If you “forget” the value of a pointer to a piece of • If you “forget” the value of a pointer to a piece of

malloc’ed memory, there is no way to find it

again!
• Killing the program frees all memory!

In class examples

• See the class web page for source code.

