Bitwise Operators in C

Uses of Bitwise Operations or Why to Study Bits

1. Compression Occasionally, you may want to implement a largeher of
Boolean variables, without using a lot of spac&2Abit int can be used to
store 32 Boolean variables. Normally, the minimupe $or one Boolean
variable is one byte. All types in C must have sitet are multiples of bytes.
However, only one bit is necessary to represera@edan value.

2. Set operations You can also use bits to represent elementgsrhall) set. If
a bit is 1, then elementis in the set, otherwise it's not. You can useisi
AND to implement set intersection, bitwise OR tglament set union.

3. Encryption: swapping the bits of a string for e.g. accordmg predefined
shared key will create an encrypted string.

Generic Bitwise Operations

Bitwise operators only work on a limited numbettyges:int andchar. This seems
restrictive--and it is restrictive, but it turnstave can gain some flexibility by doing
some C "tricks".

It turns out there's more than one kindraf In particular, theresnsigned int,
there'sshort int, there'dong int, and then unsigned versions of those ints.

The "C" language does not specify the differende/éen a short int, an int and a
long int, except to state that:

sizeof(short int) <= sizeof(int) <= sizeof(long)

Bitwise operators fall into two categories: binartwise operators and unary bitwise
operators. Binary operators take two argumentsiewimary operators only take one.

Bitwise AND

In C, the & operator is bitwise AND. The followingja chart that defines &, defining
AND on individual bits.

Xi |Yi X&Yi

P B Ol O
R O | O
=, O Ol O

We can do an example of bitwise &. It's easiestadhis on 4 bit numbers, however.

Variable bz by by bg
X 11 00
y 1 01 0
z=x&y 1/0 00

Bitwise OR

The | operator is bitwise OR (it's a single vetthz). The following is a chart that
defines |, defining OR on individual bits.

Xi Vi XY
0O 0 O
0 1 1
1 0 1
1 1 1

We can do an example of bitwise |. It's easiedbtthis on 4 bit numbers, however.

Variable bz b, by b
X 11 00
y 1.0/1]0

z=x|y' 1 1 1 0

Bitwise XOR

The " operator is bitwise XOR. The usual bitwise @ferator isnclusiveOR. XOR
is true only if exactly one of the two bits is true

The following is a chart that defines #, definin@R on individual bits.
XiYi XMy

0
0
1
1

We can do an example of bitwise . It's easiestthis on 4 bit numbers, however.

Variable bs by by bg
X 1/1 0 0
y 1010
z=x"y 0 1/1 0

Bitwise NOT

There's only one unary bitwise operator, and thutiise NOT. Bitwise NOT flips
all of the bits.

The following is a chart that defines ~, definin@MNon an individual bit.

Xi =X
0
1 0

We can do an example of bitwise ~. It's easiedbtthis on 4 bit numbers (although
only 2 bits are necessary to show the concept).

Variable b3 b2 b1 bo
X 11,00
z=~x |00 11

Facts About Bitwise Operators
Consider the expressiont y. Do eitherx ory get modified? The answer is no.

Most built-in binary operators do not modify thdues of the arguments. This applies
to logical operators too. They don't modify theigaments.

There are operators that do assignment such as;+=, and so on. They apply to
bitwise operators too. For example, |=, &=, *=. NMeall binary operators have a
version with = after it.

Bitshift Operators

Introduction

The bitshift operators take two arguments, andddike:

X <<n
X >>n

wherex can be any kind of int variable or char variablegn can be any kind of int
variable.

Restrictions

Like bitwise operators, you can only perform bifsbperations orx (the left
argument) on certain types: in particular, any kahtht and any kind othar.

There are sneaky ways to shift bits even if youatker types (say, float). This
involves tricks with casting. We'll see this at ted of this chapter.

Operator <<
The operatiorx << n shifts the value of x left by n bits.
Let's look at an example. Supposis a char and contains the following 8 bits.

b7 bs bs bs bz by by bg
110001 11

If we shift left by 2 bits, the result is:

b7 bs bs bs bz by by bg
0,001 1100

When you shift left bk bits thenp; . x = bi. If i + k > N, then bitb; fell off the left
edge. Ifi < K, thenb; = 0. In other words the low K bits are all 0's.

That means that as you shift left, the bits onhiigéd end (to the left) fall off, and 0 is
shifted in from the right end.

Left shifting is multiplying by 2
If you shift left on an unsigned int by K bits, stis equivalent to multiplying by2

Shifting left on signed values also works, but deer occurs when the most
significant bit changes values (from O to 1, oo D}.

4

Operator >>

Left shifting generally creates few problems retgss of type. O's are shifted from
the least significant end, and bits fall off thegnsignificant end.

Right shifting causes a few more problems. Whefiispito the right for unsigned
int, bits fall off the least significant end, and @re shifted in from the most
significant end. This is also known lagjical right shift(logical shifts shift in 0's).

However, with signed int, the story is differenth¥ right shifting does depends on
the compiler. One possibility is to shift in 0'8sj as unsigned int's do. If this occurs,
then you divide by 2 (if you're shifting K bits), bubnly for non-negative values of x.
For negative values, you've made it positive, ame longer makes sense that this
operation is equivalent to dividing by.2

Compilers may also shift in the sign bit. Thusg if negative, the sign bitis 1, so 1's
are shifted from the most significant end. If xax@-negative, 0's are shifted from the
most significant end. This is called anthmetic right shiftsince the sign bit is shifted
in. Thus, if you shift right by K bits, then K 16s K O's are shifted in.

Let's look at an example of this. Suppose x lotkesbbefore:

b7 bs bs bs bz by by bg
110001 11

Let's shift right by 3 bits. If the sign bit is #leid in, the result is:

b7 bs bs bs bz by by bg
1111 10 0|0

If O's are shifted in, the result is:

bz be bs bs bz by by bg
0,001 1000

Shifting Doesn't Change Values

Here's one of those rather annoying facts abothat js perfectly consistent with the
way C does things. Suppose x = 3 and n = 2. Whed tiee following code do?
int X ;
int n
X << n
printf("%l\n", x) ;

3;
2,

What does it print? (think before turning the page...

The answer is 3. The answer is NOT 12.

Why is that? Suppose you were asked to sum x +hatWill happen to x or y? Of
course, you know that nothing happens to themtigarnt where does the sum go? A
temporary value is created internally, and thatigas$ typically used to assign to
some result or printed.

The same thing happens when you do x << n. It eseatemporary value with a
bitshifted version of x, but does not change tHee/af x.

So, how do you save the change? Simple, just agsign

X = X << n ;
printf("%\n", x)

This prints out 12 (if x is 3 and n is 2).

There's an equivalent way to do this. Use the operator. Nearly every C binary
operator has a version with ='s after it.

X <<= n ;
printf("%\n", x)

Shifting Bits for other types

Suppose you wish to shift left on float variabl€se compiler will complain that you
can't do this. Bitwise/bitshift operations aremfided on float variables. So, what can
you do?

Trick the compiler. How do you do that? Make itthithe float is an int.

Here's the wrong way to do it.

float x ;
(int)x <<= n; // left shift by n bits

You can try to cast the float to an int. But if yda this, you have two problems. First,
casting creates a temporary value. Even if you Hasgethe bits will actually change.
A float that's cast to an int causes the fractiquaat to be truncated.

Nevertheless, casting is the right idea. Here's toodo it.

float x ;
int * ptr = (int *) (& X)
*ptr <<= n; // left shift by n bits

You make a pointer that points to the float witmsanumber of bytes, then you shift
based on the dereferenced pointer. At this poihemwe manipulate *ptr, we're
actually manipulating x.

The Magic of XOR

Various Views of XOR

You can think of XOR in many ways. Assume thandq are Boolean variables.
Also assume that;, po, ...ph are Boolean variables. Let (+) be the XOR operéltos
is a circle with a plus sign inside it). In thisseawe assume thatandq are boolean
values, instead of words, and we assume (+) ia &R, not bitwise XOR. Later
on, we'll use it as bitwise XOR.

e p(+)gistrue if exactly one gb andq is true. This is the conventional
definition of XOR.

e p1(+)p2(+) ... (+) pis true if the number of variables with the valuee is
odd (and is false if the number of variables wité value true is even). Notice
this definition ignores the variables which aregssd to false.

Properties of XOR

Here are several useful properties of XOR. Thidiappo plain XOR and bitwise
XOR.

e X(+)0=x
XORing with 0 gives you back the same number. TAus,the identity for
XOR.

e X(+)1=\

XORing with 1 gives you back the negation of thie Again, this comes from
the truth table. For bitwise XOR, the propertylightly different:x * ~0 = ~x
That is, if you XOR with all 1's, the result wilelihe bitwise negation af

e X(+)x=0

XORing x with itself gives you 0. That's becauss either 0 or 1, an@ (+) 0
=0andl(+)1=0

o XOR is associative.
Thatis:(x (+) y) (+) z=x (+) (y (+) 2)
You can verify this by using truth tables.
e XOR is commutative.
Thatis:x (+) y =y (+) x

You can verify this by using truth tables.

7

Swapping without "temp"

e = X,

< X =
1 Ilé

yy
tenp ;

Now solve this without using a temp variable. Timsans you can ONLY useand
y. This does NOT mean that you name the variedte?2.

X
y
X

I
x
> >
<

The key to convincing yourself this works is to geeack of the original value of
andy. LetA be the original value of (that is, the valug has just before running
these three lines of code). Similarly, Bebe the original value of.

We can comment each line of code to see what'semapgp

IIx==A,y==B

X =x"y,;

[Ix==A"B,y==B

y =x "y,

Il x==A"B
Ily==(A~B)*"B==A"(B"B) (by Assoc)
/I ==A™0 (by z”z==0 property)

/I ==A (by z”~ 0 ==z property)

X =x "Ny ;

IIx=(A"B)"A

Il ==(A"NA)"B (by Assoc/Commutativity)

/I ==0"B (by z ~ z == 0 property)
/I ==B (by z N 0 == z property)
IIy==A

After the second statement has executed A. After the third statement,= B.

Writing bitwise XOR without

Suppose you wanted to implement bitwise XOR, bdb'tihave * operator. What
would you do? With bitwise AND (&) and bitwise OR,(you can do this.

XNy == (~x &y) | (x &~y)

This is the standard definition of XOR as definedigic books, applied to bitwise
operations.

Is Bit | Set?

Wishing Doesn't Always Make it So

Suppose you had a character variable, declared like
char ch ;

How might you set the least significant bit to 1@u¥might be tempted to do the

following:
ch[0] =1 ; //WRONG! Does not set bit 0 of ch

After all, aren't arrays wonderful? Wikhouldn'tthis work? Why shouldn't C allow
us this nice and simple way to manipulate bits Alladoesn't.

The reason has to do with how arrays are definé€dl in

arr[1] is really defined ay arr + i) wherearr is& arr[0] and+ i does pointer
arithmetic. The compiler performs the following qouatation.

address of arr[i] is
addr(arr) + (i * sizeof(type of array elemen t))
Thus, you find out what addreas is at, then multiply by the number of bytes for
the type of one element in the array. This createaddress. Recall that addresses in

memory refer to bytes, not to individual bits. Thathere the problem lies. The
semantics of array access refer to memory addre$$sses.

Mask
We're going to consider bitstring pattern calledask. Here's one example of a mask.
bz be bs bs bz by by bg
0000 1000
This is a bitstring with exactly one bit that hagadue of 1. In this exampléz = L
Similarly, the bitflipped version of this is alsorsidered a mask.

b7 bs bs bs bz by by bg
111101 11

What's the purpose of a mask? The purpose isheratccess an individual bit (or
range of bits) or to modify an individual bit (@nge of bits).

Creating a Mask

Before we see how to use a mask, let's write codectate a mask. This turns out to

be rather simple.
unsi gned char mask = 1 << |

What doedl << ido? The problem is what type is 1? It's most likatyint, which
means that it's mostly like 31 zeroes followed Hy 0,1 << icaused; = 1 while
the rest of the bits are 0.

To create the second kind, you can do bitwise magai the mask from the first
part, as in:

unsi gned char mask = 1 << |
mask = ~mask ; // flip the bits to create an inverted mask

***the simplest way to create a mask is to asslgnrelevant hexadecimal value to
the mask but this is not always applicable...

Using the Mask

Let's see how we can use this mask to determinéheha bit is set or clear. Before
we can do that, perhaps we shodédinewhat it means to be set or clear.

e Toset a bit means to make the value of the bit 1.
« Toclear a bit means to make the value of the bit 0.

Suppose you're asked to write a function that nsttnue if biti is set, and false if it's
clear. We'll call this functiorsBitlSet().

Its code: (Hereinafter we’ll usg/pedef unsigned char BYTE for simplicity)
int isBitlSet(BYTE ch, int i)

BYTE mask = 1 << i
return nmask & ch ;

}
Here's why it works (i = 3).
ch b7 be b5 b4 b3 b2 b1 bo

mask 0O 0001 0 OO0
result=ch&mask 0 0 0|0 b3/0 0 O

We don't particularly care what the character ldddes Just assume it's some 8-bit
bitstring, b-...bp. To distinguish the character from the mask, labgl the bits of the
mask asns...m.

The mask has bin; set, though 3 was picked arbitrarily. Notice whappens when
you bitwise AND the mask and the character.

The bits which are 0 in the mask cause the resw@tso be 0 (sincé & b; = 0). Bit bs
is ANDed with the '1' appearing in the mask at fiasims. That results irs.

If b3 =1, thenresult is non-zero. bz = 0, thenresult is zero.

10

Is Any Bit Set Within a Range?

Introduction

int isBitSetlnRange(BYTE ch, int low, int high) ;

In order to implement this function, we need to mhothe mask. In particular,
supposdow = 3andhigh = 5, then we would expect the mask to look like:

b7 be bs bs bz by by bg
001 11000

How to Create a Mask with a Range

Method 1 Write a for-loop that checks if hitis set, from the previous section.

for (int i =low; i <= high ; i++)
if (isBitlSet(ch, i)
return TRUE ,
/I'1f it didn't return true in the for-loop, then r eturn false
return FALSE ;

However, the main drawback is using a loop. Iflthistring had been much longer
(say, 32 or 64 hits), using a loop is more ineéfitithan not using one.

Method 2 This is somewhat complicated, so we'll need takredown into steps.

o First, we need to create a mask with the apprapnamber of 1's. Suppose
we wantk 1's. Initially, we'll create a mask with- k 0's, followed by 1's.
This is easier (for now) than creating the actuatknwe need.

The question is how to computegivenlow andhigh. This is a classic off-by-
one situation. Your first instinct might Imgh - low. But this would be
incorrect. If the indexigh == low, thenhigh - low ==

That's not what you want. Whéigh == low, you want to test for a single bit,
I.e. bhigh (Which is the same dx, Sincehigh == low). Thus, you want the
formula to equal 1, whehnigh == low.

So, the formula should begh - low + 1

Here's the code to do this.

BYTE nask = ~0 ; /I creates all 1's, using bitwise
/I negation of O

int numbnes = (high - low + 1 ;
int numBits = sizeof(BYTE) * 8 ;
/I creates (numBits - numOnes) 0's followed by numO nes 1's

mask >>= (nunBits - nunOnes) ;

11

e Then, we need to shift left to place the 1's indbirect spot. The question is
how much to shift left. The answer is abit tricklere's how to figure the
answer. Think about the least significant bit. dt'positionb,. It currently has
a value of 1. Where should this bit end up? Sitise¢he rightmost bit, it
should be the rightmost 1 when we shift left. Angene's the rightmost 17? It's
atbow. S0 we need to shift left Bgw bits. The remaining 1's shift left with it,
and the leftmost 1 should landkaiy, because we computed the number of 1's
ahead of time.

mask <<= | ow ;

So, the entire code to create the mask looks like:

BYTE nask = ~0 ; /I creates all 1's, using bitwise
/I negation of 0
i nt numOnes (high - Tow + 1 ;
int numBits = sizeof(unsigned char) * 8 ;
/I creates (numBits - numOnes) 0's followed by numO nes 1's
mask >>= (nunBits - nuntnes) ;
mask <<= | ow ; // shiftleft group of 1's to correct location

Notice that no loops were used.

The one possible problem we have is the mask tsdiifigd to the right. If we had
used a signed char, instead of an unsigned chamiglg have had the sign bit shifted
in from the left. That would not create the desineakk (instead, it would leave us
with all 1's — think why).

So, here's a solution that avoids this problem.

BYTE mask = ~0 ; /l creates all 1's, using bitwise
/I negation of 0
int numbnes = (high - low) + 1 ;

/I creates (numBits - numOnes) 1's followed by numO nes 0's
mask <<= nunDnes ;

/I creates (numBits - numOnes) 0's followed by numO nes 1's
mask = ~mask ;
mask <<= | ow ; // shift left the group of 1's to correct location

By left shifting, we guarantee that O's are shiftettom the right, regardless of
whether the type is signed or unsigned. Howevemeez the additional step of
negating the mask to get the pattern we want. 3tlistion avoids using right shifts,
thus should be more portable.

Method 3 The previous solution is moderately complicatethiok about, though
once you get used to the idea, it isn't all thak ba

A third way to produce the mask is to not only bishift operators, but also to use
subtraction.

Consider the following two masks.

12

bz bs bs bs bz by by bg

maskHigh 001 11 111
maskLow 0 0000 1 11
maskHigh -maskLow 0 0 /1 1 1 0 0 O

So, if we could create a mask whigh 1's and a mask witlow 1's (as shown above),
then subtract, we'd get the desired mask.

How can we get a mask wikh1's? To answer this, answer the following question
Suppose you have 1000 in base 10. This is 1, feliblay 3 zeroes. If you subtract 1
from 1000, what do you get? You get 999. Supposehyave 100000. Thisis 1
followed by 5 zeroes. If you subtract 1 from thatu get 99999.

If you have 1, followed bk zeroes and you subtract 1 from it, then what doget?
You getk 9's.

Now, if this were binary, and you have 1 followgdkozeroes, and you subtract 1,
what would you get? You'd gktl's.

So, here's how you getaskHigh andmaskLow.

BYTE naskHigh = (1 << (high +1)) - 1;
BYTE naskLow = (1 << low) - 1 ;
BYTE nask = maskH gh - naskLow ;

There is a slight awkwardness when computiragkHigh. We want the leftmost 1 to
appear abnigh. This means when we create the 1, followed byrkesg the "1" has to
be shifted to bit positiobngn + 1. On the other hand, no such problems occur with
maskLow. The string of 1's we want appear in the correcation by shifting 1 to
bIow-

If you're observant, you'll notice that when we poitemask, we're performing a
computation that's of the for(w - 1) - (y - 1) Notice the 1's cancel, and you @et

y)-
So, we can get the mask without subtracting Inas i

BYTE mask = (1 << (high+1)) - (1 <<low) ;
Putting it All Together

Once you create the mask, the code is really sitoptbeck the range.
int isBitSetlnRange(BYTE ch, int low, int high)

BYTE mask = ;
/I code to create mask

return ch & nmask ;

13

How to Set a Bit

So far, we've written functions to determine thiigaf individual bits of a number,
or to determine if, within some range of bits, wiegtany bit was set.

I'm sure you're interested in actually modifyingsbOnce you understand masks, it's
easy to modify individual bits.

Here's the prototype of the function we wish to lenpent.

BYTE setBit(BYTE ch, int i) ;

This will take a character as input, beto 1, and return that new character, while
leaving the original character untouched (whichgeaqs because the original
character is passed by value, which means it'pgp @abthe argument).

BYTE setBit(BYTE ch, int i)

BYTE mask=1<<i; /I we could cast to BYTE, just to be safe
return ch | mask ; /I using bitwise OR

}

Let's see how this works on an example:

bz bs bs bs bz by by bg

ch 100 00011
mask 0 0 0 0O '1 0 0 O
chjmask 1 |10 0/0 10 1 1

Instead of bitwise AND, we use bitwise OR. If yoerform bitwise OR on a bkt

with 0, you get back blt. Thus, for all the bit positions in the mask wagro (in the
example above, it's every bit exceptligiin the mask), the corresponding bit position
of ch & mask is just the value of the corresponding bit positioch.

Setting or clearing a bit according to val (0/1):

BYTE setBit(BYTE ch, int i, int val)
{
BYTE mask = 1 << |
i f(val == 1) // setting the bit
return ch | mask ; // using bitw se OR
el se{
mask = ~mask; // clearing the bit
return ch & mask ; //using bitwise AND

14

