
In
tr
o
d
u
c
to

r
y

C
o
u
rs

e
in

S
c
ie

n
ti
fi
c

P
ro

g
ra

m
m

in
g

L
ec

tu
re

3
(1

)

S
el

ec
ti
on

st
at

em
en

ts
Se
le
ct
io
n
st
at
em

en
ts
al
lo
w
th
e
pr
og
ra
m
to
se
le
ct
di
ffe
re
nt
ex
ec
ut
io
n

pa
th
s
de
pe
nd
in
g
on

da
ta
.
T
he
re
ar
e
tw
o
se
le
ct
io
n
st
at
em

en
ts
in
C
:

i
f
an
d
s
w
i
t
c
h
.

T
he

i
f
st
at
em

en
t
ch
oo
se
s
ex
ec
ut
io
n
pa
th

by
te
st
in
g
a
lo
gi
ca
l

ex
pr
es
si
on
,

i
f

(
e
x
p
r
e
s
s
i
o
n

)
s
t
a
t
e
m
e
n
t

e
l
s
e

s
t
a
t
e
m
e
n
t

A
ny

va
lid

st
at
em

en
t
is
al
lo
w
ed
,
in
cl
ud
in
g
a
ne
w

i
f
st
at
em

en
t.

E
xa
m
pl
e,
co
m
pu
ti
ng

a
bs

x
=

|x|
:

i
f

(
x

>
0
)

a
b
s
x

=
x
;

e
l
s
e a
b
s
x

=
-
x
;

N
A

D
A

M
a
rc

o
K

u
p
ia

in
e
n

m
a
r
c
o
k
@
n
a
d
a
.
k
t
h
.
s
e

Introductory Course in Scientific Programming Lecture 3 (2)

Logical expressions
Logical expressions are formulated using (a
combination of) relational, equality, arithmetic
and / or logical operators.

Each logical expression evaluates to either false
(0) or true (1, nonzero).

Relational operators

Symbol Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Logical operators

Symbol Meaning

! logical negation

&& logical AND

|| logical OR

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (3)

Logical expressions (cont.)

Equality operators

Symbol Meaning

== equal to

!= not equal to

Example: (1 < n ≤ 100 or n = 150) can be
written (1<n && n<=100 || n==150).

It is important not to confuse equality (==)
with assignment (=).

Mistakes can result in relevant data being
overwritten and/or wrong execution path begin
chosen.

(i == j) tests whether i is equal to j.
(i = j) assigns i the value of j and is
evaluated as true if j is nonzero.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (4)

The switch statement
switch (expression) {
case constant expression : statements
...

case constant expression : statements

default : statements

}
All expressions must return integer (or
character) values.

The constant expressions (or case labels) may
not contain variables or function calls.

For simple use of switch the last statement in
each case group should be break;.

(To see what happens otherwise one needs to
discuss jump statements which are not part of
this course.)

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (5)

The switch statement (cont.)
The switch statement can be used to avoid
cascaded if statements.

Example: Solve polynomial equation of degree
1 or 2.

Cascaded if statements:

if (degree == 1)

{/* Solve eqn of degree 1*/}

else if (degree == 2)

{/* Solve eqn of degree 2 */}

else

{/* Print error message */}

switch statement:

switch (degree) {

case 1: /* Solve degree 1*/; break;

case 2: /* Solve degree 2*/; break;

default: /* Print error message */;

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (6)

Iteration statements
Iteration statements (or loops) are used to
repeatedly execute a statement. There are
three iteration statements in C: while, do and
for.

while (expression) statement

while executes the statement as long as the
expression is true.

Example, computing powers of 2 smaller than
100:

int n = 0;

int pow = 1;

while (pow < 100) {

printf("%3d %3d\n", n, pow);

n = n + 1;

pow *= 2;

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (7)

do loops
do statement while (expression)

do loops are essentially while loops, but the
controlling expression is tested after the
statement is executed.

Example, do loop written as while loop:
int i=1;

while (i) {
statement

i = expression;

}

Example, powers of 2 revisited:
int n=0;

int pow=1;

do {
printf("%3d %3d\n", n, pow);

n = n+1;

pow *= 2;;

} while (pow < 100)

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (8)

for loops
for (expr1 ; expr2 ; expr3)

statement

The syntax of for loops is more complicated
than that of while and do loops, but compilers
will often produce faster executables.

The expressions should be interpreted as
follows:
expr1 Executed before starting iteration.

expr2 Iterate while expression is true.

expr3 Executed at end of each iteration

Example, for loop written as while loop:
expr1;

while (expr2) {
statement

expr3;

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (9)

for loops (cont.)
Example, computing n!:

nfac = 1;

for (i=1 ; i<=n ; i++)

nfac = nfac * i;

expr1 and expr3 may be empty or contain
several statements separated by commas.

Example, powers of 2 again:

for (n=0,pow=1 ; pow<100 ; n++,pow*=2)

printf("%3d %3d\n", n, pow);

A loop can be terminated by using the break
statement within the loop body even if the
controlling expression is true.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (10)

From problem to executable
Thinking A problem is formulated, algorithms

devised and data structures chosen.

Programming The C program is written using an editor
(emacs, xemacs, vi).

Preprocessing Preprocessor directives are interpreted and
a preprocessed C file generated (gcc -E, cc
-E, cpp).

Compiling The preprocessed source code is translated
to object code (machine instructions) (gcc
-c, cc -c).

Linking The object code is linked with external
libraries to produce an executable (gcc, cc,
ld).

Debugging Make sure the program works as expected.
Correct possible mistakes (gdb).

The first step is the most important! By
considering the problem carefully the
debugging time can be significantly reduced.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (11)

Compiling & linking

emacs, viEditor

file1.c file2.c file3.c Text files

cc, gcc cc, gcc cc, gcc
Preprocessor

cc, gcc cc, gcc cc, gccCompiler

file1.o file2.o file3.o Object files

cc, gcc, ldLinker External libraries

a.out Executable

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (12)

Compiling & linking (cont.)
There are two different C compilers at Nada:
cc (Sun) and gcc (GNU). Both can be used for
preprocessing, compiling and linking small
programs in a single command.

gcc smallfile.c -o runme generates an
executable runme from the source code in
smallfile.c.

The object files are linked with the most
common libraries, including stdio and stdlib.

If compiling a program is tedious (several
different files, many options, different
programming languages, . . .) it is convinent to
use makefiles. These will be covered in lecture
9.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (13)

Compiler & linker options
Additional instructions to the compiler are
given as command line options.

Option

gcc cc Effect

-c -c Compile source files but do not link

-llib -llib Link with library lib

-Ldir -Ldir Add dir to library search path

-Idir -Idir Add dir to include file search path

-otgt -otgt Name executable tgt (default:a.out)

-O2 -fast Compile with optimisation

-Wall -v Print “extra” warning messages

There are many more useful options.

Give the command man gcc (or man cc) at the
prompt for a complete list.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 3 (14)

Compiling – examples
Compile program.c and generate executable
target with optimisation,
> gcc program.c -O2 -o target

Same example, but linked with math library
> gcc program.c -O2 -o target -lm

Compile files main.c and function.c and link
to obtain executable run

> cc -c main.c

> cc -c function.c

> cc function.o main.o -o run -lm

Userdefined include files and libraries,

> cc program.c -L~/mylibraries

-I~/myincludefiles -lmylib

(Note: > is used to indicate that the command
is given at the prompt, it should not be typed.)

NADA

Marco Kupiainen
marcok@nada.kth.se

