
Introductory Course in Scientific Programming Lecture 2 (1)

Plan
• Basic data types: declaration, assignment

• Arithmetic expressions

• Formatted input and output

• Relational and logical expressions

• Selection statements

• Iteration statements

• Compiling & linking

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (2)

A (simple) generic C program
preprocessor directives

return-type function_1(parameters) {

declarations

statements

}

/* .

. (This is a C comment)

.

*/

return-type function_n(parameters) {

declarations

statements

}

int main(int argc, char **argv) {

declarations

statements

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (3)

Statements
The major part of a C program consists of
statements. A statement is a command which
is executed when the program runs.

All statements must be terminated by a
semi-colon, e.g.

area = pi * radius * radius;

A statement can span several lines,

area = pi *

radius * radius;

Several statements can be collected in a
compound statement which is treated as one
statement by the compiler. This is
accomplished by braces,

{

area = pi * radius * radius;

circumference = 2 * pi * radius;

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (4)

Basic types
All variables in C must have a type, which
specifies what kind of data it will hold. A
variable must be declared before use.

Some basic types:

Type Description

int Integer values

float Floating point numbers

double Floating point numbers

(higher accuracy, larger numbers)

char Character

There are different variants of the basic types,
e.g. unsigned int which can only hold
non-negative integers, and long int which can
hold larger integers.

In addition to the basic types C allows the user
to specify his/her own data types.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (5)

Declaration of variables
Each program / function should begin with a
declaration of variables. For example

main() {

int i, j;

double f;

/* statements */

}

This declaration defines two integers, i and j,
and a floating point number f which can be
used in the program.

Note: C is case-sensitive.

A variable which is not supposed to change
value can be declared as a constant, e.g.

const double pi = 3.14;

This improves efficiency and simplifies
debugging.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (6)

Arithmetic expressions
A variable is assigned a value using the
operator =.

C supports all basic arithmetic operators.

• a = -b;

• a = b + c;

• a = b - c; (equivalent to a=b+-c;)

• a = b * c;

• a = b / c;

Operator precedence as in mathematics. The
statement
a = (1 + 2) * 3 - 4;

will result in a being assigned the value 5.

Additional mathematical functions declared in
math.h (trigonometric, exponential, power,
. . .).

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (7)

Compound assignment
When one is only interested in updating the
value of a variable it is possible to use
compound assignment.

a += b; (-= , *= , /=)
is equivalent to

a = a + b; (- , * , /).

i=i+1 can be conveniently written using the
increment operator ++. i=i+1 can be written
i++ (postfix) and ++i (prefix).

Prefix:
i = 1; j = 1; k = j + ++i;

i ← 2 , k ← 3 (=1+2)
i updated before evaluation

Postfix:
i = 1; j = 1; k = j + i++;

k ← 2 (=1+1) , i ← 2
i updated after evaluation

Decrement operator : --

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (8)

Type conversion
Since all values in C have a specific type some
mathematical operations can introduce
ambiguities. For example, what type should
the sum of an int and a double have?

These questions are resolved by type
conversion. Implicit type conversion is done by
the compiler when

• type of expressions on left and right hand
sides differ (assignment)

• operands in expression of different type

Since a type can not be changed during
execution the first case is handled by converting
the value of the right hand side to the type on
the left hand side before assignment.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (9)

Type conversion (cont.)
The second case is handled by “safe
conversion”. If one type can be expressed in
the other (e.g. int special case of double) that
type is converted to obtain a more accurate
result.

There are some pathological cases.

Sometimes it is advisable to do an explicit type
cast,
(type) expression

which converts the value of the expression to
the given type.

Example:

int i , j;

double f;

i = 3 ; j = 2;

f = i / j; /* f will hold 1.0 */

f = (double) (i / j);/* f will hold 1.0 */

f = (double) i / j; /* f will hold 1.5 */

f = i / (double) j; /* f will hold 1.5 */

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (10)

Formatted output (stdio.h)
Output in C is written to output streams. The
two most common are stdout (for standard
output, usually screen) and stderr (for error
messages).

Output written to stderr is shown as soon as
the statement is executed.

Output written to stdout is buffered.

A programmer can define new streams.

int fprintf(FILE *stream,

const char *format, ...);

int printf(const char *format, ...);

fprintf allows the programmer to specify the
output stream. printf writes to stdout.

The appearance of the output is specified by
the format string.

The ellipsis ,. . . , should be replaced by the
values to print.

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (11)

Formatted output (cont.)
A simple example:

printf("Area = %f\n", pi*r*r);

"Area = %f\n" is a format string instructing
the computer to write the string "Area = "

followed by a floating point number (pi*r*r
evaluated) and a linebreak to stdout.

The format string must contain a conversion
specification for each value to print.

Some common conversion specifiers:

Specifier Displays

%f Floating point numbers

%e – ” – , exponential form

%g Combination of two above

%d Integers

%c Characters

%s Strings

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (12)

Formatted output (cont.)
The basic specifiers can be modified. The
specification %p.qX prints a value of type X

with precision q and a minimum field width p

(for tables).

The meaning of “precision” depends on X .
Typically the number of decimals (X = f or

X = e) or significant digits (X = g or X = d).

Escape sequences instructs the computer to
print special characters. Some useful examples:

Sequence Displays

\n New line

\t Tab

\" Double quote (”)

\\ Backslash (\)
\? Question mark (?)

NADA

Marco Kupiainen
marcok@nada.kth.se

In
tro

d
u
c
to

r
y

C
o
u
rse

in
S
c
ie

n
tifi

c
P
ro

g
ra

m
m

in
g

L
ec

tu
re

2
(1

3
)

F
orm

atted
in

p
u
t

Input
in

C
is

read
from

input
stream

s.
T

he
m

ost
com

m
on

is
s
t
d
i
n

(standard
input,

usually
keyboard).

i
n
t

f
s
c
a
n
f
(
F
I
L
E

*
s
t
r
e
a
m
,

c
o
n
s
t

c
h
a
r

*
f
o
r
m
a
t
,

.
.
.
)
;

i
n
t

s
c
a
n
f
(
c
o
n
s
t

c
h
a
r

*
f
o
r
m
a
t
,

.
.
.
)
;

T
he

form
at

string
is

basically
the

sam
e

as
for

f
p
r
i
n
t
f.

T
he

ellipsis
should

be
replaced

by
addresses

to
m

em
ory

locations
w

here
the

values
are

to
be

stored.

A
ddresses

to
variables

can
be

obtained
by

the
address

operator
&.

&
x

returns
the

address
of

the
variable

x
in

m
em

ory.

N
ote:

T
o

read
a
d
o
u
b
l
e

the
form

at
specification

%
l
f

m
ust

be
used,

%
f

w
ill

not
w

ork.

N
A

D
A

M
a
rco

K
u
p
ia

in
e
n

m
a
r
c
o
k
@
n
a
d
a
.
k
t
h
.
s
e

Introductory Course in Scientific Programming Lecture 2 (14)

Input/output – an example
#include <stdio.h>

main() {

const double pi = 3.14;

double radius;

printf("Enter radius of circle: ");

scanf("%lf", &radius);

printf("Area = %e , Circumference = %.5f\n\n",

pi*radius*radius, 2*pi*radius);

}

NADA

Marco Kupiainen
marcok@nada.kth.se

Introductory Course in Scientific Programming Lecture 2 (15)

Input/output – an example (cont.)
Execution of example program:

c2m2-20>a.out

Enter radius of circle: 1

Area = 3.140000e+00 , Circumference = 6.28000

c2m2-20>a.out

Enter radius of circle: 4.5

Area = 6.358500e+01 , Circumference = 28.26000

c2m2-20>a.out

Enter radius of circle: 2.3e1

Area = 1.661060e+03 , Circumference = 144.44000

NADA

Marco Kupiainen
marcok@nada.kth.se

