
Structures, Unions and Bit-fields in C

Objectives

Be able to use compound data structures in
programs

Be able to pass compound data structures as
function arguments, either by value or by
referencereference

Be able to do simple bit-vector manipulations

A Rahman Structures and Unions 2

Structures

 Arrays require that all elements be of the same data type.

 Many times it is necessary to group information of different
data types
• An example is a materials list for a product (list typically includes a

name for each item, a part number, dimensions, weight, and cost)

Structures and Unions 3

 C supports data structures that can store combinations of
character, integer floating point and enumerated type data

 They are called a struct.

A Rahman

Structures

Compound data:

A date is
 an int month and

 an int day and

 an int year

struct ADate {

int month;

int day;

int year;

};

int main(){

Structures and Unions 4

struct ADate date;

date.month = 1;

date.day = 18;

date.year = 2018;

return 0;

}

A Rahman

Declaring structures

struct tag {
member-list

} variable-list;

struct ADate {

int month;

int day;

Any one of the three
portions can be omitted

struct ADate{

int month;

int day;

struct {

int month;

int day;

Structures and Unions 5A Rahman

int year;

};

int main(){

struct ADate date;

date.month = 1;

date.day = 18;

date.year = 2018;

return 0;

}

int year;

}date;

int main(){

date.month = 1;

date.day = 18;

date.year = 2018;

return 0;

}

int year;

}date;

int main(){

date.month = 1;

date.day = 18;

date.year = 2018;

return 0;

}

typedef

typedef struct {
member-list

} type-name;

typedef struct {

int month;

int day;

/* omit both tag and variables */
This creates a simple type named ‘type-name’
(more convenient than struct tag)

struct tag {

Structures and Unions 6A Rahman

int day;

int year;

}Date;

int main(){

Date date;

date.month = 1;

date.day = 18;

date.year = 2018;

return 0;

}

struct tag {
member-list

} variable-list;

Typedef

Mechanism for creating new type names
 New names are an alias for some other type

 May improve clarity and/or portability of the
program

typedef int Length;

typedef struct ADate {

Overload existing type
names for clarity and

portability

A Rahman Structures and Unions 7

typedef struct ADate {

int month;

int day;

int year;

} Date;

Length i = 100;

Date d = { 1, 18, 2018 };

portability

Simplify complex type names

Structure Representation & Size

sizeof(struct …) =

sum of sizeof(field)

+ alignment padding
Processor- and compiler-specific

struct CharCharInt {

char c1;

char c2;

int i;

} foo;

8 bytes

A Rahman Structures and Unions 8

6261 EF BE AD DE

c1 c2 ipadding

foo.c1 = ’a’;

foo.c2 = ’b’;

foo.i = 0xDEADBEEF;

x86 uses “little-endian” representation

8 bytes

Structure Representation & Size

sizeof(struct …) =

sum of sizeof(field)

+ alignment padding
Processor- and compiler-specific

struct CharIntChar {

char c1;

int i;

char c2;

} foo;

12 bytes

A Rahman Structures and Unions 9

foo.c1 = ’a’;

foo.c2 = ’b’;

foo.i = 0xDEADBEEF;

6261 EF BE AD DE

c1 ipadding padding

x86 uses “little-endian” representation

c2

12 bytes

Constants

Allow consistent use of the same constant
throughout the program
 Improves clarity of the program

 Reduces likelihood of simple errors

 Easier to update constants in the program

Constant names are

Cox Structures and Unions 10

int array[10];

for (i=0; i<10; i++) {

…

}

#define SIZE 10

int array[SIZE];

for (i=0; i<SIZE; i++) {

…

}

Preprocessor directive
Constant names are

capitalized by convention

Define once,
use throughout

the program

Arrays of Structures

Date birthdays[NFRIENDS];

int

check_birthday(Date birthdays[], int N, Date today)

{

int i;

ConstantArray declaration

Array index, then

typedef struct {

int month;

int day;

int year;

}Date;

A Rahman Structures and Unions 11

int i;

for (i = 0; i < N; i++) {

if ((today.month == birthdays[i].month) &&

(today.day == birthdays[i].day))

return i;

return -1;

}

Array index, then
structure field

Anonymous Structures

typedef struct {

struct Point{

int x;

int y;

}g;

int r;

} Circle;

int main(){

Circle c;

Point p;

c.g.x = 7;

c.g.y = 8;

c.r = 5;

p.x = 9;

A Rahman Structures and Unions 12

} Circle; p.x = 9;

p.y = 7;

}
dx = c.g.x – p.x;

dy = c.g.y – p.y;

d = dx*dx + dy*dy;

if(d <= r*r)

printf(“Inside”);

else

printf(“Outside”);

Anonymous Structures

typedef struct {

struct {

int x;

int y;

}g;

int r;

} Circle;

int main(){

Circle c;

int x, y;

c.g.x = 7;

c.g.y = 8;

c.r = 5;

x = 9;

A Rahman Structures and Unions 13

} Circle; x = 9;

y = 7;

}
dx = c.g.x – x;

dy = c.g.y – y;

d = dx*dx + dy*dy;

if(d <= r*r)

printf(“Inside”);

else

printf(“Outside”);

Anonymous Structures

typedef struct {

struct {

int x;

int y;

};

int r;

} Circle;

int main(){

Circle c;

c.x = 7;

c.y = 8;

c.r = 5;

}

A Rahman Structures and Unions 14

} Circle;

Pointers to Structures

Date

create_date1(int month,

int day,

int year)

{

Date d;

void

create_date2(Date *d,

int month,

int day,

int year)

{

d->month = month;

Pass-by-reference

A Rahman Structures and Unions 15

d.month = month;

d.day = day;

d.year = year;

return (d);

}

d->month = month;

d->day = day;

d->year = year;

}

Copies date

Date today;

today = create_date1(1, 18, 2018);

OR

create_date2(&today, 1, 18, 2018);

Pointers to Structures (cont.)

void

create_date2(Date *d,

int month,

int day,

int year)

{

d->month = month;

d->day = day;

month: 1

day: 18

year: 2018

0x30A0

0x30A4

0x30A8

d: 0x10000x3098

A Rahman Structures and Unions 16

d->day = day;

d->year = year;

}

void

fun_with_dates(void)

{

Date today;

create_date2(&today, 1, 18, 2018);

}

today.month:

today.day:

today.year:

0x1000

0x1004

0x1008

1

18

2018

Pointers to Structures (cont.)

Date *

create_date3(int month,

int day,

int year)

{

Date *d;
What is d pointing to?!?!
(more on this later)

A Rahman Structures and Unions 17

d->month = month;

d->day = day;

d->year = year;

return (d);

}

Pointers to Structures (cont.)

Date *

create_date3(int month,

int day,

int year)

{

Date *d;

d = malloc(sizeof(Date));

int main(){

A Rahman Structures and Unions 18

d = malloc(sizeof(Date));

d->month = month;

d->day = day;

d->year = year;

return (d);

}

Date *p;

p = create_date3(1, 18, 2018);

printf("%d %d %d", p->month,
p->day, p->year);

free(p);

}

•Like structures, but every member occupies
the same region of memory!
 Structures: members are “and”ed together

 Unions: members are “xor”ed together

union VALUE {

Unions

A Rahman Structures and Unions 19

union VALUE {

float f;

int i;

char *s;

};

/* either a float xor an int xor a string */

• Up to programmer to determine how to
interpret a union (i.e. which member to
access)

Unions

• Storage
 size of union is the size of its largest member

A Rahman Structures and Unions 20

 size of union is the size of its largest member

 avoid unions with widely varying member sizes;

for the larger data types, consider using pointers
instead

• Initialization
 Union may only be initialized to a value appropriate

for the type of its first member

Unions

Choices:

An element is
 an int i or

 a char c or

 a float f or

a

union allType {

int i;

char c;

float f;

double d;

} u;

int main(){

scanf(“%d”,&u.i);

A Rahman Structures and Unions 21

 a double d

sizeof(union …) =

maximum of sizeof(field)

scanf(“%d”,&u.i);

...

...

scanf(“%c”,&u.c);

...

...

scanf(“%f”,&u.f);

...

...

scanf(“%lf”,&u.d);

}

Unions

c

i or f

padding

padding

d

A Rahman Structures and Unions 22

LOW order bytes High order bytes

Unions (for inspecting bytes of int)

union intChar {

int i;

unsigned char c[4];

} n;

A Rahman Structures and Unions 23

} n;

int main(){

scanf(“%d”,&n.i);

printf(“%d %d %d %d”,

n.c[0],n.c[1],n.c[2],n.c[3]);

}

Unions (idea can be used for
encryption)

union intChar encrypt(union intChar x){

char t;

t = x.c[0];

x.c[0] = x.c[1];

x.c[1] = t;

t = x.c[2];

union intChar {

int i;

unsigned char c[4];

A Rahman Structures and Unions 24

t = x.c[2];

x.c[2] = x.c[3];

x.c[3] = t;

return x;

}

} n;

int main(){

n.i = 0x00231115;

n = encrypt(n);

printf("%0x", n.i);

}

Bit-field Structures

Special syntax packs
structure values more
tightly

Padded to be an integral
number of words

 Placement is compiler-

struct StudentInfo {

unsigned int v:2;

unsigned int t:1;

unsigned int c:1;

unsigned int g:1;

} s;

s.v = 3;

A Rahman Structures and Unions 25

 Placement is compiler-
specific

 Bit0fileds can only be int
or unsigned int

1 1 0 1 0 … …

v t g

s.t = 0;

s.c = 1;

s.g = 0;

printf("%d %d %d %d",s.v,s.t,s.c,s.g);

c

…

padding

Bit-field Structures (be careful
about signed extension)

Left most bit is treated as
sign bit

 Extended with sign bit

 Thus a ‘11’ become
1111 …. ….. … 1111

which is ‘-1’ and not ‘3’

struct StudentInfo {

int v:2;

int t:1;

int c:1;

int g:1;

} s;

s.v = 3;

A Rahman Structures and Unions 26

1 1 0 1 0 … …

v t g

s.t = 0;

s.c = 1;

s.g = 0;

printf("%d %d %d %d",s.v,s.t,s.c,s.g);

c

…

padding

Prints -1 0 -1 0

The following restrictions apply to
bit fields. You cannot,

• Define an array of bit fields.

Restrictions applied to bit-field

A Rahman Structures and Unions 27

• Define an array of bit fields.
• Take the address of a bit field.
• Have a pointer to a bit field.

structure + union + bit-field

union charToBinary{

unsigned char n;

struct {

unsigned a:1;

unsigned b:1;

unsigned c:1;

unsigned d:1;

unsigned e:1;

See bit pattern of a
character ASCII code

A Rahman Structures and Unions 28

unsigned f:1;

unsigned g:1;

unsigned h:1;

};

}x;

int main(){

x.n = 'a';

printf("%d%d%d%d%d%d%d%d", x.h, x.g,x.f,x.e,x.d,x.c,x.b,x.a);

}

structure + union + bit-field

union StduentID{

unsigned int n;

struct {

unsigned int r:12;

unsigned int d:8;

unsigned int y:8;

Student ID at BUET

A Rahman Structures and Unions 29

};

}x;

int main(){

x.n = 0x1206003;

printf("Year : %d, Department: %02d, Roll: %03d",x.y,x.d,x.r);

}

