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Application of Machine Learning Techniques for Real-Time Sign
Language Detection using Wearable Sensors

Nazmus Saquib and Ashikur Rahman, Member, IEEE

ABSTRACT
Sign language is a method of communication primarily used by
the hearing impaired and mute persons. In this method, a letter is
expressed by hand gestures and meaningful words are constructed
by signaling multiple letters in a sequence which is known as fin-
gerspelling. In this paper, a system has been developed to detect fin-
gerspelling in American Sign Language (ASL) and Bengali Sign Lan-
guage (BdSL) using (data) gloves containing a number of suitably
positioned sensors. While designing the system, at first we identify
all suitable locations of the sensors in order to properly construct
the glove that can detect both the languages. The methodologies
employed have the ability to be used even in resource-constrained
environments. The system is capable of accurately detecting both
static and dynamic symbols in the alphabets. The system shows a
promising accuracy of (upto) 96%. Furthermore, this work presents
a novel approach to perform a continuous assessment of symbols
from a stream of run-time data.
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1 INTRODUCTION
Sign language is a method of communication which primarily uses
articulation of the hands to convey meaningful messages. It in-
volves a simultaneous combination of hand shapes, orientation and
movement of the hands, arms or body, and facial expressions. It is
the most common mode of communication among the hearing and
speech impaired persons. In other words, sign language is mostly
used by the people with speech difficulties due to some sorts of
disability.

N. Saquib is with the Department of Computer Science, University of California, Santa
Barbara, USA (email: nazmus@ucsb.edu).
A. Rahman is with the Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (email:
ashikur@cse.buet.ac.bd).

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’20, June 08–11, 2020, Istanbul, Turkey
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

According to World Health Organization (WHO), over 5% of
the world population is hearing impaired [7]. This considerably
large community, along with the speech impaired community, uses
sign language as the primary mode of communication. When two
persons knowledgeable with sign language want to communicate
with each other, they can do it conveniently. Problem arises when a
normal person without domain knowledge of sign languages wants
to communicate with a disabled person. Generally, in this type of
scenario an interpreter is used. Interpreters translate sign language
to oral language and vice versa. However, an interpreter might not
always be available. Secondly, use of interpreters could be very
costly. A professional ASL interpreter certified by the Registry of
Interpreters for the Deaf (RID) has an hourly rate of 30-35 USD [4].
Therefore, it is desirable to have an intermediary system which
will translate sign language to oral language and vice versa. This
work attempts to partially bridge this gap (at least) in one direction
– translating sign language to text.

Automatic recognition of the sign language is a very challenging
task because it varies from language to language as the alphabet is
different for different languages. For example, Fig. 1 and Fig. 2 shows
the alphabet of American Sign Language (ASL) and Bengali Sign
Language (BdSL) respectively. It is easy to see that ASLwidely varies
from BdSL. Sign languages even vary from region to region. For
instance, ASL is different fromBritish Sign Language (BSL) although
they share the same alphabet. Moreover, some sign languages have
both single-handed and double-handed version of certain symbols.
Again, sign languages can have a compressed form where a single
word is represented by a single gesture. Sometimes instead of using
a single gesture for a word sign language allows fingerspelling
which is a process of spelling out the word by using signs that
correspond to the letters of the word. While using sign language, a
user might choose for using a sign for the word if available, or the
user might choose fingerspelling of the word. There are manywords
which have not been standardized in the respective sign language
dictionaries. According to [5], there are more than 150,000 words
in spoken English that do not have ASL counterpart. Moreover,
people’s names, places, titles, brands, etc., also do not have any
standardized symbols. Besides, a user might not know the exact
sign for a particular word. In these scenarios, the user must resolve
to fingerspelling the required words.

Although traditionally sign language is considered to be an un-
aided method of communication (i.e. relying on only the user’s
body to convey a message), a substantial amount of research work
has been performed to aid sign language recognition using special-
ized tools. Traditional sign language recognition systems can be
broadly classified into two categories: (i) digital image processing
based systems and (ii) data glove (a glove with various sensors
attached to it) based systems [9]. In the former approach, a large
corpus of images of various signs is collected which are then used
to train a model using supervised learning. The latter approach
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Figure 1: ASL alphabet [1].

follows a similar trend but instead of using images it deploys vari-
ous sensors that generate necessary signals to train a classifier. In
this paper, we focus on one-handed fingerspelling of ASL and BdSL
using data glove approach. The major contributions of the paper
are summarized below:

• We design and implement a data glove capable of recogniz-
ing fingerspelling in ASL and BdSL. Although commercial
data gloves are extant, they might not always be readily
available to the end-user. Moreover, some of the commer-
cial gloves might need tweaking for specific languages. This
work elaborately describes the construction of a data glove
using sensors which are much more common than commer-
cial gloves. The design of the glove can be changed to fit a
particular language.

• We build a repository system containing a data set of sensor
values using the designed data glove. A crucial prerequisite
in training a supervised classifier is the availability of labeled
data. However, sign language data set of ASL alphabet are
not publicly available, and that of BdSL alphabet does not
exist at all. This work attempts to ameliorate this situation
by generating a comprehensive dataset.

• We propose a system capable of recognizing sign language
even under resource-constrained environment. Apart from
the real-time assessment of fingerspelling, this system pro-
vides support during data collection phase.

• Finally, we provide sign language models using data gloves.
Although a considerable amount of research is found in the
literature on sign language recognition using data glove,
most of them provide little insight to sign language modeling,
that is, determining intelligible messages from a stream of
sensor data. This work proposes a methodology to infer
characters and subsequentlywords from a continuous stream
of data.

The rest of this paper is organized as follows. Section 2 presents
related research works. Section 3 discusses glove construction, data
collection, and the process of training a suitable classifier. Section 4
gives an overview of the system and discusses some critical design
issues. Section 5 presents experimental results and the findings
derived from these results. Finally, Section 6 concludes the paper
with some possible directions to future works.

Figure 2: BdSL alphabet [8].

2 BACKGROUND
Over the years, sign language recognition (SLR) has been attempted
in two different approaches: (i) digital image processing (DIP) based
approach and (ii) data glove based approach. In both approaches,
the basic idea remains the same – collecting a considerable amount
of data and applying a supervised learning algorithm to classify that
data. In digital image processing based systems, the data is simply
pictures of various signs. On the other hand, in data glove based
approach, the data is just the value of various sensors attached to
the glove. Despite the basic idea being the same, there are certain
differences between the two approaches that we describe next.

2.1 DIP based Approach for SLR
In DIP based approach, at first, a large set of images is collected.
The collection process can be facilitated by either a generic camera
or specialized one such as a consumer depth camera [13]. Once
the data is collected, various machine learning algorithms are ap-
plied to train a model capable of classifying images of different
signs. One major drawback of this approach is the data collection
procedure is inherently cumbersome, and the quality of the image
might be compromised depending on the ambient light of the envi-
ronment [18]. Another glaring disadvantage is it is not feasible to
create a portable system using this vision based approach. Assum-
ing somehow the user can carry the camera with him/her, he/she
still has to remain within the field of vision of the camera, thus
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restricting the user’s distance and motion. In accordance with the
popularity of Microsoft Kinect, Dong et al. [10] attempted to use
this low-cost depth camera to recognize 24 letters of ASL by using
a random forest ML algorithm. Nabiyev et al. [16] applied neural
network on images of vowel characters of the Turkish language.
Pandey et al. [19] proposed a methodology to segment out the hand
region from the image and successively generating a feature vec-
tor of ten features. Finally, they applied backpropagation neural
network for classification. Liwicki et al. [14] worked on a dataset
of 1,000 low-quality webcam videos of 100 fingerspelt words of
BSL. They employed Hidden Markov Model (HMM) to interpret
probable words from a stream of characters. Naoum-Sawaya et
al. [17] carried out various steps to extract suitable templates from
raw images, such as histogram equalization, background rejection,
skin color extraction and thresholding, morphological filtering, and
flood filling. After the successful generation of templates, template
matching algorithm was used to classify images. Rekha et al. [21]
employed K-Nearest Neighbor (KNN) and Support Vector Machine
(SVM) for hybrid classification of a single signed letter. Furthermore,
they proposed a lexicon-based approach to recognize fingerspelt
words using HMM. Transcending the use of a simple RGB camera,
Kuznetsova et al. [13] worked on real-time SLR using a consumer
depth camera. The images collected from this camera were used
to derive rotation, translation, and scale invariant features. They
trained a multi-layered random forest (MLRF) to classify the feature
vectors.

2.2 Data Glove based Approach for SLR
A data glove has a number of sensors attached to it to determine
various hand movement features such as the bending of fingers, the
orientation of the hand, rotational motion of the hand, contact be-
tween two fingers, etc. Although some of the data gloves [2, 3] are
commercially available, they are not suitable for sign language
recognition due to their high cost or unavailability of specific
sensors. A glove designed and created from scratch results in a
cheaper product, which also provides the flexibility of incorpo-
rating only the required sensors. The cheapest glove from 5DT
company costs USD 995 [3], whereas the construction of the glove
designed in this work required less than USD 160. Although quite
a few research works have been performed regarding SLR using
data gloves [11, 15, 20, 22], very few of them attempted to provide a
complete solution – starting with the construction of data gloves to
continuous detection of sign language, ensuring complete character
set recognition of a particular alphabet.

Patil et al. [20] attempted to classify all 26 characters of the ASL
alphabet by detecting bending only. Section 3.1 explains why this
is not a feasible solution. They tried to classify letters based on the
ranges of flex sensor values without any specific direction on how to
decide the range values. Elmahgiubi et al. [11] elaborately described
a procedure of constructing a data glove capable of detecting 20
letters of the ASL alphabet. However, just like the previous work,
they did not clearly specify how to find with the boundary values to
perform ranged queries. None of these works provide any method
of sign language modeling, i.e. retrieving intelligible messages from
a stream of data. Mehdi et al. [15] used 7-sensor glove of 5DT
company to collect data and subsequently used Artificial Neural

GND

Fixed
resistor

Flex
sensor

Vin

to
ADC
pin

Figure 3: Voltage divider circuit.

Network to classify signs. They left out two dynamic letters of the
ASL alphabet and tried to detect the rest 24 letters. Although they
discuss briefly sampling rate of data collection from sensors, they
also do not elaborate on sign languagemodeling. SLARTI is a system
developed at the University of Tasmania to recognize Australian
Sign Language (Auslan) [22]. This system exploits the fact that
signs can be described in terms of four basic manual features: (i)
handshape, (ii) orientation, (iii) place of articulation, and (iv) motion.
SLARTI contains four feature-extraction neural networks, one for
each feature.

3 METHODOLOGY
In this section, we discuss several design and implementation issues
of the sign language recognition system. A sign language recogni-
tion system can be subdivided into a series of discrete steps. The
first step is to identify the necessary sensors and their suitable
positions in the gloves to correctly capture different hand gestures.
The glove is then constructed by embedding sensors at the desired
positions. With the constructed glove a significant amount of data
are needed to be collected which are fed to train a Machine Learn-
ing (ML) model to classify the captured data. Detailed study of the
dataset might reveal whether a further modification to the glove
and relative positions of the sensors is necessary or not. If a mod-
ification is required, all or a few of the previous steps need to be
repeated. Once a suitable model is trained, sign language modeling,
that is, determining intelligible messages from a stream of sensor
data starts. The trained model can then be deployed in the produc-
tion environment. Further experiments need to be conducted to find
out the accuracy of the model and to gain insight on comparative
studies with other such models. Different issues of each of the steps
are described next.

3.1 Data Glove Construction
A number of options are available for constructing the data glove. A
normal woolen glove can be used as the base. However, as woolen
gloves tend to be roomy and do not fit tightly around the hands,
other types of gloves are preferable. Lycra gloves, wicketkeeper’s
inner gloves, etc. are all good candidates. Surgical gloves can be
used too, but as these tend to fit too tightly around the hand, it might
become cumbersome to wear and take the glove off repeatedly with
all the sensors attached to it. As the same glove would be used by
people with varying hand sizes, an average sized glove is preferred.
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Detection of Bending. The primary criteria to classify symbols
in ASL and BdSL (or any other sign language) is the bending of the
individual fingers. To detect this bending a type of resistive sensor
called flex sensor can be used. Flex sensors are made of a material
which changes its resistance upon bending. In particular, the re-
sistance increases as the flex sensors are bent. Separate five flex
sensors are required to detect the bending of five different fingers.
The flex sensors are attached to the back of each finger. To facilitate
ease of removal and attachment of sensors, pockets using strips
of cloth can be sewn at the back first. As microcontrollers cannot
measure resistance directly, a voltage divider circuit is required.
Interestingly, the exact resistance value of a flex sensor at a certain
instance is not required, rather a measure of change in resistance
serves the purpose. The more the sensor is bent, the more its resis-
tance increases. Therefore, by simply observing the relative changes
in resistance value, it can be inferred whether the sensor is straight
or bent. The voltage divider circuit shown in Fig. 3 has been used.
When the flex sensor is bent, its resistance increases, which results
in lower voltage in Analog-to-Digital Converter (ADC) pin. If the
flex sensor is subsequently straightened, its resistance decreases,
which results in higher voltage in ADC pin. The circuit in Fig. 3
can be arranged in an alternative form where the position of the
flex sensor and the fixed resistor is interchanged. In this case, the
ADC pin will receive a relatively high voltage when flex sensor is
straight and a relatively low voltage when the sensor is bent.
Detection of Contact. Although just by determining the relative
bending of each finger a number of symbols can be classified, there
exist a few symbols that cannot be classified solely based on this
information. For example, the ASL characters ‘M’, ’N’, and ‘T’ shown
in Fig. 1 have similar bending of the fingers. In case of ‘M’, the thumb
goes between the little finger and the ring finger, in case of ‘N’ the
thumb goes between the ring finger and the middle finger, and in
case of ‘T’ the thumb goes between the middle finger and the index
finger. In order to differentiate these letters the contact information
between the thumb and other fingers is needed. Similarly, the letters
‘R’, ‘U’, and ‘V’ also have similar bending of individual fingers but
varies in contact points.

The contact information between two points can be captured in
several ways. One option is to use a force sensing resistor (FSR).
When pressure is exerted upon the conductive film of an FSR, its re-
sistance decreases. Thus it is a resistive sensor and a voltage divider
circuit similar to the one shown in Fig. 3 can be used. However,
there are certain caveats which are not apparent at the first look.
First of all, the area occupied by the conductive film is not that large.
As a result, it takes a bit of time for the user to get habituated with
pressing the exact area. Although this situation can be alleviated to
some extent by using a larger FSR, a similar problem still remains
for users with below average hand size. As the glove tends to feel
more roomy for such users, the conductive strip tends to slip from
the initial position. A more severe drawback can be observed while
trying to distinguish ‘M’, ‘N’, and ‘T’. The most suitable zones to
place FSR to detect these letters would be the side of the little finger,
side of the ring finger, and side of the middle finger, as evident from
Fig. 1. Because during signing ‘M’ the thumb will be directly on
the FSR on the little finger, the resistance of this particular FSR will
be lower than those of the rest two. In reality, the lateral pressure
exerted by the middle finger on the FSR of the ring finger, and that

GND

pulldown
resistor

Vcc

aluminum
foil

to
digital
pin

Figure 4: Simulating button using aluminum foil.

by the index finger on the FSR of the middle finger is very close to
the pressure exerted by the thumb on the FSR of the little finger.
Therefore it becomes difficult to distinguish these letters. Similar
arguments for ‘N’ and ‘T’ rules out the possibility of using FSR as a
contact sensor.

The most viable option to capture contact information is to
imagine the contact sensors simply as buttons. If there is a contact
i.e. the button is ON, then a particular signal level is generated.
If there is no contact i.e. the button is OFF, then another level of
signal is generated. Instead of an actual button, the two ends of
the button can easily be simulated by conductive surfaces. A cheap
and readily available solution could be obtained from aluminum
foils used as chocolate wrappers as shown in Fig. 4. One drawback
of using such foils is that over time they tend to form creases at
certain points due to bending and lose conduction at the points of
crease formation. Other than aluminum foils, conductive fabrics
or conductive threads can also be used as contact sensors. The
final implementation of the glove in this work has used conductive
fabric.
Detection of Orientation and Motion. Apart from bending of
fingers and contact between two fingers, another feature that is
sometimes required is the orientation of the hand. For example,
the ASL letters ‘H’ and ‘U’ as observed from Fig. 1 have similar
bending and contact, the only difference is their orientation. Similar
observations can also be made for the letter pairs ⟨G,Q⟩ and ⟨K, P⟩.

One last feature required to differentiate certain characters is
motion. Although most characters in ASL and BdSL are static, very
few are dynamic, meaning motion is involved when they are signed.
For example, the ASL characters ‘J’ and ‘Z’ require certain types
of motions as shown in Fig. 1. To detect orientation and motion,
an accelerometer and a gyroscope unit need to be used. A suitable
candidate is the MPU6050 board, which is capable of detecting six
degrees of freedom, namely gravitational force along the three axes
and the rotational speed along the three axes. The module has the
direction of the two axes drawn on it, the third one can be inferred
from the two. It can communicate with microcontrollers via the
I2C protocol. The best place to attach the module would be back of
the hand, a few centimeters above the wrist.

3.2 Data Collection
Data has been collected from five users with varying hand sizes
using the same glove. Table 1 shows the hand sizes and comments
for the five participants. To measure the hand size, two metrics
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Table 1: Hand size of participants.

User ID Length Circumference User comment on glove
1 7.0 6.5 Slightly roomy
2 6.5 6.1 Too large
3 7.2 7.2 Too tight
4 6.9 6.8 Comfortable
5 7.0 7.0 Perfect fit

have been used – one is length, another is circumference. Both of
these parameters have been recorded for each user.

To facilitate the process of data collection and later on real-
time evaluation, a desktop application was developed. Data can
be collected in two ways: 1) data can be logged to an SD card
connected to the microcontroller board and subsequently moved
to a computer, or 2) the microcontroller can be connected directly
to the computer via USB port where the data can be stored directly.
The second method has the obvious advantage that a manual trip
from a microcontroller to a computer can be saved. Each user gave
data in two sessions for each language (ASL and BdSL). In each
session, the user gave 500 data for each character. Therefore, for
each character, there are 1000 data points from each user. There
are some common sings between the ASL and BdSL alphabet, they
have been collected once. In each session, a user gave data for one
character in five iteration. An iteration consists of the user holding
the sign for ten seconds. Data was collected at 100ms interval,
resulting in 100 data in one iteration. Between successive iterations,
the user straightened his/her hand once and then made a fist with
his/her hand once before moving onto the next iteration. This has
been done so that the previous iteration does not have any effect
on the next iteration. This ensures variability in data which would
be observed when a user is signing different letters continuously.
In case of dynamic signs, the stationary state of the sign has been
recorded. As ‘I’ and ‘J’ have the same static configuration of hand,
the dataset contains the data of ‘I’ but not that of ‘J’, ‘J’ being the
dynamic one.

Each feature vector consists of sixteen features. The first five
features, namely thumbFlex, indexFlex, middleFlex, ringFlex, and
littleFlex, correspond to the values of five flex sensors attached to
five fingers. These are required to detect bending of each of the
fingers. The next five features are for five contact sensors placed at
various locations of the hand. The locations were chosen by study-
ing the symbols through an iterative approach to data collection
and classification. A contact sensor was placed at a suitable location
only if more than one character showed similar bending but varied
in contact. Five places were identified to be enough to distinguish
among the characters of ASL/BdSL. The five features correspond-
ing to these places are indexFront, middleFront, middleSide, ringSide,
and littleSide. The next three features correspond to the X, Y, and
Z component of the accelerometer. It was observed that certain
pairs of characters have similar reading for flex sensors and contact
sensors. However, they differ in orientation. Accelerometer was
used to detect this difference in orientation. The three features next
to that correspond to the X, Y, and Z component of the gyroscope.
There are a few dynamic characters in ASL and BdSL. The motions

involved in these dynamic characters can be detected using gyro-
scope. The last three columns in the dataset correspond to the letter
being signed i.e. the label, the user ID, and the session ID for that
particular user respectively. As the difference of data over users
and sessions has been studied in details in Section 5.1, user ID and
session ID have been included in the dataset. This amounts to a
total of nineteen columns in the dataset, among which sixteen are
features. The full dataset can be accessed at [6].

The necessity of various sensors described in Section 3.1, and
in turn the selected features, can be more succinctly understood
with the help of certain features observed together. For example,
‘U’ and ‘V’ have similar bending for all the fingers and thus are not
separable based solely on flex sensor values. However, the index
finger and the middle finger come in contact while signing ‘U’,
but not while signing ‘V’. That is, the contact sensor positioned
between these two fingers give a value of 1 for ‘U’ but 0 for ‘V’, while
the flex sensor values remain similar for both the characters. This
phenomenon is demonstrated in Figure 5. The plots were generated
by keeping all of the fingers straight and apart from each other
for some time, then moving on to the symbol of a character and
holding it for some time, followed by a fully straight hand again.
Similarly, the use of accelerometer can be justified with cases such
as ‘H’ and ‘U’ as shown in Figure 6. In case of these two letters, the
bending of the fingers are similar but the orientation is different.
This difference in orientation is apparent from the X component of
the accelerometer reading. Finally, the role of gyroscope in detecting
motion for dynamic characters such as ‘Z’ is evident from Figure 7.
The beginning and the ending of the plot corresponds to the static
‘Z’ symbol, while the middle portion corresponds to the z-shaped
motion. As can be seen from the figure, the flex sensor values
remain similar throughout the time period. However, a significant
amount of fluctuation is observed in gyroscope reading during the
motion. The points corresponding to the time when first horizontal
motion, the diagonal motion, and the second horizontal motion
was detected have been labeled.

3.3 Training a Classifier
Once data has been collected, the next step is to train a suitable clas-
sifier. As the model should be able to work in a resource-constrained
environment, not all classifiers are suitable. For example, lazy learn-
ers like KNN are out of consideration. On the other hand, neural
networks have an added advantage that the model can be trained
on a different processor and only the weights can be simply loaded
into the microcontroller. Due to this fact, if a neural network based
classifier requires heavy computation during training phase it is
not a concern. But if the testing phase requires heavy computation,
that classifier should be avoided.

Although at first glance one might assume that there should be a
single classifier for the two languages (ASL and BdSL), in reality, two
different classifiers are required. This is because there are eleven
overlapping symbols between the two languages. There is an option
in the system for the user to choose the desired language.

For classification purpose, data can be partitioned in a number
of ways. For example, the data of a single user can be treated as
the training data, the rest of the data can be treated as test data.
An opposite extreme can be treating a certain percentage of the
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Figure 5: Linecharts of flex sensors and the contact sensor between the index finger and the middle finger for ‘U’ and ‘V’.

data of each user as training, and the rest as test. The latter option
would give better performance over a range of users, as the trained
model would have better generalization capability. The former
model might have better performance for that individual but would
not provide good results over a vast range of users. Moreover, as
the glove should have the capability to work for users who have
not experimented with the glove, a better option would be to use
the data of a group of users as training while treating the data of
others as testing.

While training, the classifier is trained based on the values from
the five flex sensors only. In other words, an initial classification is
made based on the bending of the fingers. This essentially puts a
feature vector in a cluster, and if the cluster contains more than one
letter, a rule-based classification is employed. The exact rule can be
found out by simply fitting a decision tree on the values of contact
sensor and accelerometer. For example, the letters ‘V’ and ‘U’ have
a similar type of bending of the fingers. So ‘V’ can be classified

as ‘U’ and vice versa by the classifier, i.e., the classifier puts it in
a cluster containing two letters: ‘V’ and ‘U’. But a contact sensor
between the index and middle fingers allow the rule-based classifier
to distinguish between these two characters. A block diagram of
the classification subsystem is presented in Fig. 8.

It is worth noting that instead of multi-level classification, an
end-to-end classification approach can be employed too, i.e., feeding
all of the data from flex sensors, contact sensors, and accelerometer.
However, the former approach was employed in initial implemen-
tation and later kept unchanged for a few reasons. Firstly, the glove
construction and the training steps are closely coupled in this work.
When it was observed that flex sensors alone were not sufficient
for classification, only then the other sensors were incorporated in
the glove. As the contact sensors provide a value of 0 or 1 and the
accelerometer mostly provides a value within [-1,1], intuitively it
made more sense to pass the sensor readings through a decision tree
to break any sort of tie. Secondly, this approach, in general, uses
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Figure 6: Linecharts of flex sensors and X component of accelerometer for ‘H’ and ‘U’.

a minimal amount of data during computation. At first, only the
flex sensor values are used for computation during classification,
data from other sensors are used only when required. Finally, it was
observed that an end-to-end classifier did not affect the accuracy
considerably. There was a very slight deterioration in accuracy
percentage for an end-to-end classifier, the difference being in the
hundredths place.

Once a classifier has been trained on the collected data, it can
be deployed in production environment. Experiments can then be
performed to analyze the performance of the system and to conduct
comparative studies.

4 SYSTEM DESIGN AND PERFORMANCE
TUNING

This section discusses design issues of the developed system. Sec-
tion 4.1 discusses interfacing among the various components of the
system. Section 4.3 presents a simple technique for sign language

modeling, i.e. the process of forming intelligible messages from a
stream of sensor values. The developed technique is capable of
filtering out the transitional noise observed when the user moves
from letter to letter. A suitable Machine Learning algorithm has
been chosen from four after a comparative study for the final de-
ployment of the system. The four algorithms are Artificial Neural
Network (ANN), Support Vector Machine (SVM), Ensemble Learn-
ing (Random Forest), and K-Nearest Neighbor (KNN). Section 4.5
discusses suitable parameter selection for these algorithms.

4.1 Physical Connectivity
The constructed glove is interfaced to an Arduino Mega microcon-
troller board via circuitry concised in a veroboard. The sensor data
collected by the microcontroller is then sent over to a computer
via the USB port. In case of Arduino Mega, there is already a USB
to serial converter which facilitates this communication. If how-
ever, a standalone microcontroller is used lacking this capability, a
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Figure 7: Linechart of values from flex sensors and gyroscope for ‘Z’.
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Figure 8: Block diagram of the classification subsystem.

Figure 9: Labeled real time assessment window.

separate chip has to be used for this communication. The required
visualization can then be presented on the computer monitor. A
variant of this setup might be to altogether get rid of the computer
and perform all the functionalities in the microcontroller. That is
also possible but would require some extra components. For data
collection purpose the microcontroller would require a Micro SD
card/SD card breakout board along with the card, and for display
purpose, it would require a display module. Two common choices

for display modules are LCD and OLED, the former option being the
cheaper one. Alternatively, the microcontroller could communicate
to a smartphone via Bluetooth.

A desktop application was developed in Java to facilitate data
collection and real-time assessment. A labeled diagram of the real-
time assessment window is presented in Fig. 9. The line chart shows
the ADC values as affected by the bending/straightening of flex
sensors. There are five lines for each of the flex sensors attached
to the five fingers. Just below the line chart are five indicators
representing whether the contact sensors are in contact or not.
Next, the accelerometer and gyroscope readings are dumped in a
tabular fashion. At the very bottom, there is a serial display which
shows a set of sensor values once the test button situated at the
top row is pressed. The window contains a couple of dropdowns to
select the language and character. The latter dropdown is used only
in data collection mode, but not in real time assessment mode. The
log button is also exclusively used in data collection mode. On the
top-right, there is an image which contains the letter being signed at
that instant. Just below that there is a window showing the stream
of characters as classified by the trained classifier. The underscores
represent space in this display. An explicit character has been used
to represent space so that it is obvious exactly when the system
introduces a pause after the last character being recognized. If a
user continues to give sign without sufficient pause these will not be
displayed, following the convention of fingerspelling. This window
clears itself once it gets full.

4.2 Detection of Dynamic Symbols
Both ASL and BdSL alphabet have a few dynamic letters. A sim-
ple way to detect dynamic symbols is to map them to finite state
machines (FSM). As ‘Z’ is the most complex among all of the dy-
namic symbols, the detection of ‘Z’ is explained in details. Other
dynamic symbols can be similarly mapped to corresponding state
machines. To express ‘Z’, a user needs to first make the static ‘Z’
symbol as shown in Fig. 1. While holding this symbol, the user
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Figure 10: FSM to detect ‘Z’.

needs to make one rightward movement, followed by a diagonally
downward movement, then finally another rightward movement.
One movement must follow the previous one within a certain time
limit t , i.e. everything is done in one swift motion. Fig. 10 shows a
finite state machine to detect ‘Z’. Here the state Z ′ represents any
symbol other than ‘Z’, state Zs1 represents the static ‘Z’ symbol,
state Zs2 represents ‘Z’ upto first rightward movement, state Zs3
represents ‘Z’ upto diagonally downward movement, and finally Z
represents successful detection of ‘Z’. The rightward and diagonally
downward movements can be detected by studying the current and
a few prior sampled values of the gyroscope.

4.3 Sign Language Modeling
Sign language modeling using data glove is a field which has not
received that much attention from the research community. Data is
collected from the sensors at an interval of 100ms. For users with
fast response, this interval can be changed. At this rate, a classi-
fier makes a classification as soon as the sensor data is fed to it.
But right after the classifier makes a prediction that the current
symbol represents a character X (here X is a placeholder), it is not
displayed by the system. Rather the system would wait till it sees a
number equal to aMINIMUM_THRESHOLD of consecutive X s. This
has been done to remove the effect of noise during transitions from
one letter to another. The value of this MINIMUM_THRESHOLD
might again depend on the speed of an individual. While using
fingerspelling, a space or division between words is represented
by holding a symbol longer than usual. Therefore, another param-
eter, MAXIMUM_THRESHOLD, has been introduced. If a symbol
is continuously observed for more than or equal to this number,
a space is introduced by the system. An obvious question is how
to show double letters. In fingerspelling, a double letter is shown
by giving a slight bump of the hand, or a slight motion to the side.
This bump/motion can be detected with the help of gyroscope. So
if a bump is observed before MAXIMUM_THRESHOLD, the system
could display a double letter. However, it has been observed that the
readings shown by gyroscope while forming a bump correspond to
similar readings shown during certain transitions from character
to character. This resulted in the system to show double charac-
ters when in fact there was only a transition. Hence this feature
was left out. The modeling algorithm keeps track of a variable,
COUNTER, which represents the number of contiguous steps the
current character has been predicted. When the current prediction
X is observed to be different than the previous prediction X ′, the

COUNTER is reset to one. In the current system to represent double
letter the user needs to deliberately create some transitional noise
in order to reset the COUNTER.

Fig. 11 shows a simulation of this sign language modeling in
action. Here the MINIMUM_THRESHOLD is set to two and the
MAXIMUM_THRESHOLD is set to four. When the first ‘A’ is ob-
served, the COUNTER is set to one. The second ‘A’ increases the
COUNTER to two. As the COUNTER is now equal to the MINI-
MUM_THRESHOLD, an ‘A’ is displayed (step 2). Next, another ‘A’
comes up, increasing the COUNTER to three. Then another ‘A’ in-
creases the COUNTER further to four. As the COUNTER is equal to
the MAXIMUM_THRESHOLD, a space is inserted in display (step
4). Another ‘A’ after that increases the COUNTER to five. Now a ‘C’
comes up. As the current prediction ‘C’ is not equal to the previous
prediction ‘A’, the COUNTER is reset to one. Next, a ‘B’ comes up,
resetting the COUNTER to one again. Another ‘B’ increases the
COUNTER to two, making it equal to MINIMUM_THRESHOLD, so
a ‘B’ is displayed (step 8). It is worth noting that the transitional
noise ‘C’ was filtered out by using this simple mechanism.

4.4 System Integration
Figure 12 provides an overview of the full system. Data is read from
the glove at a definite sampling rate by the processing unit. Apart
from the software support to communicate with the glove and
the display unit, the processing unit contains a previously trained
model of a classifier and an implementation of the sign language
modeling algorithm described in Section 4.3. The classifier is trained
using previously collected labeled data as described in Section 3.3.
However, the classifier model and the algorithm comes into play
only during real-time analysis, these are not necessary for the data
collection mode. If the system is operating in data collection mode,
the processing unit sends the data to a computer (which can also
act as a display unit) for storage and the successive training of a
classifier. If the system is operating in real-time classification mode,
the processing unit performs two extra steps before sending data to
the display unit. Firstly, it is going to classify the set of sensor values
just read in into one of the characters using the pre-trained model
of a suitable classifier. Secondly, it is going to input the classified
character to the algorithm of sign language modeling. The sign
language modeling algorithm outputs the character to be displayed
depending on the recent few classified characters as described in
Section 4.3. Thus a stream of sensor values sampled at a definite
rate first gets classified by a pre-trained classifier to generate a
stream of characters, then the sign language modeling algorithm
dictates which character should be displayed depending on that
stream of characters. Finally, the display unit shows the actually
recognized character.

4.5 Sensitivity Analysis
Each of the studied algorithms has one or more tunable parameters.
To fix a parameter of an algorithm, the data was randomly split into
80% train data and 20% test data. It was ensured during the split
that the proportion of data from user X for character Y were equal
for all X and Y . Then the same algorithm was run over the split by
varying the value of the parameter. The value corresponding to the
highest accuracy was fixed for that parameter.
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Figure 11: A simulation of sign language modeling.
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Figure 12: Block diagram of the full system.

In case of ANN, a single hidden layer was used. Studying the
effect of increasing the number of layers was ruled out considering
the involved time and space complexity. It was observed that ac-
curacy increased steadily as the number of nodes in hidden layer
was increased up to 7 (24) for ASL (BdSL). After that, the accu-
racy oscillates around a certain mean. Four activation functions
were studied – tanh, logistic, identity, and relu. It was observed
that logistic function showed the best accuracy for both ASL and
BdSL. In case of SVM, Radial Basis Function (RBF) showed better
accuracy compared to linear, poly, and sigmoid. In case of random
forest, the accuracy increased steadily as the number of stumps
was increased up to 40 (32) for ASL (BdSL). After that, the accuracy
oscillated erratically. In case of KNN, the accuracy did not consid-
erably change after increasing the value of K beyond one for ASL.
On the other hand, the accuracy varied wildly for BdSL, exhibiting
a peak for K=200. A summary of the different parameters for the
four algorithms is presented in Table 2.

5 EXPERIMENTAL RESULTS
Experiments were conducted on the dataset to understand the
composition of data and to analyze the performance of various
algorithms on the data. As the data was collected from multiple
users in different sessions, one question of interest was whether

Table 2: Chosen values of different parameters.

Algorithm Parameter ASL BdSL
ANN no. of nodes in hidden layer 7 24
ANN activation function logistic logistic
SVM kernel function RBF RBF
Random Forest number of stumps 40 32
KNN no. of neighbors K 3 200

the data between any two users (or two sessions of a user) are
statistically significantly different. This question is addressed in
Section 5.1. At first take it might seem like a simple range-based
query over the flex sensor data might be sufficient to classify the
letters. Section 5.2 elaborates why range-based query does not give
good results. Section 5.3 discusses the relative nonuniformity in
bending of fingers over different users. Finally, Section 5.4 compares
the performance of four algorithms over the dataset.

5.1 Difference of Data over Users and Sessions
To answer the question whether the data between any two users
(or two sessions of a user) are statistically significantly different,
Wilcoxon Signed Rank Test was conducted at 0.05 significance
level. It was observed that all pairs of users showed statistically
significant difference in at least one of the five flex sensors. Among
the five users, three showed statistically significant difference in at
least one of the five flex sensors between different sessions. Among
the two users whose data did not exhibit statistically significant
difference over sessions, one user opined that the glove fit perfectly
whereas the other user stated the glove was comfortable. On the
other hand, the greatest difference over sessions was observed for
the user with the smallest hand size. This conforms to the intuitive
observation that every time a user with a small hand size wears
the glove, the sensors tend to sit on his/her hand a bit differently.
Therefore, the readings would be different each time. Conversely,
a user with a good fit will experience similar positioning of the
sensors over different sessions. As a result his/her data would not
exhibit significant difference over different sessions.
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Figure 13: Boxplot of middle flex values for ‘B’, ‘X’, and ‘S’.

5.2 Infeasibility of Range-Based Query
Classification was first attempted through a range based query.
However, it was observed that not all characters can be differen-
tiated by simply observing the range of flex sensor values. Fig. 13
shows boxplot of flex sensor values on the middle finger for letters
‘B’, ‘S’, and ‘X’. A brief look at the plot reveals that there is a clear
distinction between the range of values for ‘B’ and ‘S’. The same
can be said for the pair ‘B’ and ‘X’. However, ‘S’ and ‘X’ have a
considerable amount of overlap over their full range. Similar trends
can be observed for the other flex sensor values. Moreover, ‘S’ and
‘X’ are such a pair which cannot be differentiated with the help
of existing contact sensors, they must be differentiated with the
help of the flex sensor values. Therefore a more elegant solution is
required for classification. Later classifications were attempted us-
ing various Machine Learning algorithms which exhibited superior
performance.

5.3 Nonuniformity in Relative Bending of
Fingers

One interesting observation of this study is that the same trend
in relative bending of the fingers of different users can not be ob-
served for all letters, thus rendering an initial calibration ineffective.
Fig. 14a and Fig. 14b shows the linecharts of mean values of flex
sensors for all five users for the letters ‘A’ and ‘P’ respectively. From
the linechart of ‘A’, it is evident that the little finger of User 4 expe-
riences less bending compared to that of other users. Intuitively, it
might seem like this should be the case for all other letters. However,
the linechart of ‘P’ reveals one of the many counter examples. Here
it is observed that the little finger of User 4 actually experiences the
second most bending among the five users. Therefore, no general
comment can be made regarding the relative bending of different
users.

5.4 Performance of Different Algorithms
A K-Fold Cross-Validation was performed on the dataset by taking
ten folds. Essentially the dataset was divided into ten sets, and

Table 3: Average accuracy of algorithms after 10-Fold Cross
Validation.

Algorithm Accuracy (%)
ASL BdSL

KNN 96.1448 93.8643
Random Forest 96.1352 96.3422
ANN 95.8784 93.4368
SVM 94.916 92.1859

training and testing was performed ten times. In each of the it-
eration one set was taken as the test set, and the rest nine sets
were taken collectively as the train set. The advantage of K-Fold
Cross-Validation over multiple random splits is that every data
point is guaranteed to be in the train set at least once, the same
guarantee being provided for the test set too. The average accuracy
over the ten iterations is presented in Table 3. It can be observed
from the presented accuracies that average accuracy of random
forest and KNN are clearly better than SVM. The performance of
ANN is slightly below that of random forest and KNN. However, as
KNN is a lazy learner, it is not suitable for embedded environments.
Random forest could be deployed in an embedded environment, but
between a trained model of ANN and a trained model of random
forest, ANN has been found to be faster. Therefore ANN might be
taken as the overall best choice. Fig. 15 and Fig. 16 shows the color
coded confusion matrix resulted from running ANN on a random
80-20 split of ASL and BdSL dataset respectively.

A trained ANN model was deployed in the final system. It was
observed that the final accuracy of the system for fingerspelling
recognition was around 96%, closely following the performance
of the classifier over the collected data. However, the two thresh-
old values required by the sign language modeling algorithm had
to be manually tweaked for different users; as otherwise spaces
were being introduced for comparatively slower users before they
expected, and some letters were missed by the system for compar-
atively faster users. As a future work, a calibration phase can be
added to automatically set the threshold values for different users.

5.5 Classification of Non-Standard Gestures
Currently, it is possible to confuse the system with certain non-
standard gestures which might look like one character to the naked
eye but is actually classified as another character by the system. The
main reason behind this can be thought of as the non-availability of
sensor values corresponding to these gestures during the training
phase of the classifier. However, it is not feasible to collect data
for all possible non-standard gestures. This problem can be solved
to some extent by generating some synthetic data. Generation of
synthetic data and its subsequent use in training a classifier has
been extensively studied in the literature [12, 23, 24]. In future,
this strategy can also be employed for this work. It has also been
observed that in many cases the system outputs the correct result
even when the gestures are deformed to some extent, and starts
to show different result only when the gesture becomes ineligible
to the naked eye too. As an example of a confusing case of non-
standard gesture, flex sensor values corresponding to some gestures
of the letter ‘I’ have been presented in Figure 17. In case of ‘I’, all the
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Figure 14: Linecharts of mean values of flex sensors of different users for ‘A’ and ‘P’.

Figure 15: Confusionmatrix for ANN run on a random 80-20
split of ASL dataset.

fingers except the little finger are bent, the thumb is not bent fully
but bent enough to cross in front of the index finger. The first half
or so of the plot was obtained from this standard gesture. After that,
the thumb was gradually moved to the side so that it lost contact
with the index finger but still looked close to it. In this condition,
the gesture might still look like ‘I’ to the naked eye. However,
the system recognized this gesture as ‘Y’. In standard gesture of
‘Y’, the thumb is separated from the index as far as possible. The
exact position from where the system started to detect ‘Y’ has been
marked with a dashed vertical line in the plot.

5.6 Comparison with Previous Works
A comprehensive comparison among the previous works on sign
language recognition is presented in Table 4. Most of the previous
works were on signed letter recognition, whereas Naoum-Sawaya et

Figure 16: Confusionmatrix for ANN run on a random 80-20
split of BdSL dataset.

al. [17] and Vamplew et al. [22] attempted signed word recognition
i.e. words that can be expressed using a single gesture. The former
used DIP based method whereas the latter used glove based method.
The more complex case of sign language modeling using DIP based
method was covered by Liwicki et al. [14] and Rekha et al. [21].
However, to the best of our knowledge, sign language modeling
using data gloves has not been studied so far, which this work
does. Moreover, the variability in data collected from different users
has not been studied extensively by the previous works. On the
other hand, this work makes a detailed observation in this aspect.
Although some works reported recognition of dynamic characters,
they did not clarify the underlyingmechanism. This work provides a
detailed explanation of an FSM based method of dynamic character
recognition.
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Table 4: Comparison with previous works.

Author Language Symbol Method Algorithm Accuracy
Letters left
out

No. of finger-
spelt words

Recognition Modeling

Akmeliawati et al. [9] Malayasian - - DIP ANN 95.67% -
Kuznetsova et al. [13] ASL J,Z - DIP multi-layered ran-

dom forest
97.55% -

Dogic et al. [18] Bosnian - - DIP ANN 84.00% -
Dong et al. [10] ASL J,Z - DIP random forest 90.00% -
Nabiyev et al. [16] Turkish 21 consonants - DIP ANN 96.00% -
Pandey et al. [19] ASL - - DIP ANN 90.00% -
Liwicki et al. [14] BSL - 100 DIP multi-class logis-

tic regression /
HMM

84.10% 98.90%

Naoum-Sawaya et
al. [17]

ASL N/A N/A DIP CAMSHIFT 96.00% -

Rekha et al. [21] ASL E,G,H,J,K,N,
O,P,Q,S,T,Z

10 DIP KNN-SVM/HMM 90.0% 96.00%

Patil et al. [20] ASL - - glove ad-hoc not men-
tioned

-

Elmahgiubi et al. [11] ASL E,M,N,S,T,Z - glove ad-hoc 96.00% -
Mehdi et al. [15] ASL J,Z - glove ANN 88.00% -
Vamplew et al. [22] Australian N/A N/A glove ANN 94% -
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Figure 17: Flex sensor values corresponding to gestures for
‘I’, gradually followed by deformed gestures.

Among the works based on DIP, the work by Kuznetsova et
al. [13] showed the best accuracy of 97.55%. However, they left
out the two dynamic characters of ASL, ‘J’ and ‘Z’. Nabiyev et
al. [16] showed an accuracy of 96% on only the six vowels of the
Turkish alphabet. Although some works based on DIP included
the dynamic characters [9, 18, 19], no clarification was provided
regarding how the recognition of dynamic characters was achieved.
Liwicki et al. [14] worked on double-handed fingerspelling in BSL.
They used HMM for sign language modeling. The accuracies for
single character recognition and fingerspelt word recognition were

84.1% and 98.9% respectively. However, the latter accuracy was
obtained when the HMM was trained using 100 words. If more
words are added, the accuracy starts to fall. Rekha et al. [21] used
a similar approach, although the domain of their work was much
smaller. They covered 15 letters of ASL and 10 words formed by
these letters.

Among the works based on data gloves, the reported best accu-
racy of 96% was obtained by Elmahgiubi et al. [11]. However, there
are a few drawbacks of this work. Firstly, they left out six letters
from the ASL alphabet including one dynamic letter. Although they
covered the other dynamic letter ‘J’, they did not clarify the mecha-
nism behind this. Secondly, they performed classification using a
range-based query without clarifying how they came up with the
ranges. Finally, sign language modeling was not covered in their
work. Patil et al. [20] claimed to classify all the 26 letters of ASL
using flex sensors only. Flex sensors can only detect bending, they
did not clarify how they detected contact, orientation, and motion
using only flex sensors. They did not provide any accuracy of their
system, and just like the previous work, left out sign language mod-
eling. Mehdi et al. [15] achieved 88% accuracy over ASL alphabet
using a commercially available glove from 5DT [3]. They left out
the dynamic letters and sign language modeling just like the previ-
ous works. Vamplew et al. [22] worked on 52 gestures (including
dynamic symbols) of Australian Sign Language (Auslan) using a
commercially available glove from CyberGlove [2] and achieved
an accuracy of 94%. However, sign language modeling was not
discussed by them either.
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6 CONCLUSION
This work presents ASL and BdSL alphabet recognition using data
gloves. Recognition of both dynamic and static character of ASL
and BdSL is possible using the developed system. Sign language
modeling has also been discussed in this work. Although sign lan-
guage modeling using image processing technique has received
some attention from the research community, not much work has
been done for sign language modeling using data gloves. From that
perspective, this work provides a new insight into this problem.
The lack of dataset creates hindrance in the analysis of data glove
based systems. This work attempts to alleviate this problem by
generating a dataset containing 1000 data points for each of the
letters of ASL and BdSL.

In future, the work can be extended by improving the sign lan-
guage modeling. Although the current solution works at an accept-
able level, it is still prone to noise. The research community has
been using Hidden Markov Models (HMM) in speech recognition
for quite some time now. Following this direction, researchers have
attempted to use HMM in sign language recognition using image
processing. Perhaps the same direction can be taken and HMM can
be employed for sign language recognition using data gloves. Apart
from HMM, the application of LSTM can also be studied.

Currently, if someone wants to deliberately mislead the system,
it is possible to do so by giving signs which are not exactly the
same as valid signs but are slight derivatives. Future research can
be conducted to recognize these aberrant gestures. Moreover, a
single glove might not be suitable for all types of sign languages. A
unified design could be constructed for a data glove which would
be suitable for most, if not all, of the different sign languages.

The system makes predictions in discrete time intervals, with-
out taking into consideration time series properties. Time series
analysis might be done for continuous assessment of symbols. The
dataset does not contain dynamic gestures, the dataset could be
enriched by collecting time series data of these gestures, along with
fingerspelling data of words or sentences.
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